2D Atomic-Molecular Heterojunctions toward Brainoid Applications
Fan Shu
Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorWeilin Chen
Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Yu Chen
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Gang Liu
Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorFan Shu
Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorWeilin Chen
Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Yu Chen
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Gang Liu
Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Brainoid computing using 2D atomic crystals and their heterostructures, by emulating the human brain's remarkable efficiency and minimal energy consumption in information processing, poses a formidable solution to the energy-efficiency and processing speed constraints inherent in the von Neumann architecture. However, conventional 2D material based heterostructures employed in brainoid devices are beset with limitations, performance uniformity, fabrication intricacies, and weak interfacial adhesion, which restrain their broader application. The introduction of novel 2D atomic-molecular heterojunctions (2DAMH), achieved through covalent functionalization of 2D materials with functional molecules, ushers in a new era for brain-like devices by providing both stability and tunability of functionalities. This review chiefly delves into the electronic attributes of 2DAMH derived from the synergy of polymer materials with 2D materials, emphasizing the most recent advancements in their utilization within memristive devices, particularly their potential in replicating the functionality of biological synapses. Despite ongoing challenges pertaining to precision in modification, scalability in production, and the refinement of underlying theories, the proliferation of innovative research is actively pursuing solutions. These endeavors illuminate the vast potential for incorporating 2DAMH within brain-inspired intelligent systems, highlighting the prospect of achieving a more efficient and energy-conserving computing paradigm.
Conflict of Interest
The authors declare no conflict of interest.
References
- 1C. Chang, W. Chen, Y. Chen, Acta Phys.-Chim. Sin. 2021, 37, 2108017.
- 2K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
- 3K. Khan, A. K. Tareen, M. Aslam, R. Wang, Y. Zhang, A. Mahmood, Z. Ouyang, H. Zhang, Z. Guo, J. Mater. Chem. C 2020, 8, 387.
- 4Z. Cheng, R. Cao, K. Wei, Y. Yao, X. Liu, J. Kang, J. Dong, Z. Shi, H. Zhang, X. Zhang, Adv. Sci. 2021, 8, 2003834.
- 5C. Anichini, W. Czepa, D. Pakulski, A. Aliprandi, A. Ciesielski, P. Samorì, Chem. Soc. Rev. 2018, 47, 4860.
- 6V. B. Koman, P. Liu, D. Kozawa, A. T. Liu, A. L. Cottrill, Y. Son, J. A. Lebron, M. S. Strano, Nat. Nanotechnol. 2018, 13, 819.
- 7Z. Meng, R. M. Stolz, L. Mendecki, K. A. Mirica, Chem. Rev. 2019, 119, 478.
- 8W. Zhu, T. Low, H. Wang, P. Ye, X. Duan, 2D Mater. 2019, 6, 032004.
- 9K. F. Mak, J. Shan, Nat. Photonics 2016, 10, 216.
- 10K. Kostarelos, Nat. Rev. Mater. 2016, 1, 16084.
- 11E. Pomerantseva, Y. Gogotsi, Nat. Energy 2017, 2, 17089.
- 12S. Kang, D. Lee, J. Kim, A. Capasso, H. S. Kang, J.-W. Park, C.-H. Lee, G.-H. Lee, 2D Mater. 2020, 7, 022003.
- 13F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, M. Polini, Nat. Nanotechnol. 2014, 9, 780.
- 14K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197.
- 15K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, Science 2007, 315, 1379.
- 16Y. Qi, M. A. Sadi, D. Hu, M. Zheng, Z. Wu, Y. Jiang, Y. P. Chen, Adv. Mater. 2023, 35, 2205714.
- 17H. Bark, G. Thangavel, R. J. Liu, D. H. C. Chua, P. S. Lee, Small Methods 2023, 7, 2300077.
- 18C.-J. Shih, Chimia 2016, 70, 800.
- 19S. M. Akkanen, H. A. Fernandez, Z. Sun, Adv. Mater. 2022, 34, 2110152.
- 20G. Chakraborty, R. Padmashree, A. Prasad, Mater. Sci. Eng., B 2023, 297, 116817.
- 21C. Feng, Z. Wu, K. Huang, J. Ye, H. Zhang, Adv. Mater. 2022, 34, 2200180.
- 22Z. Cai, B. Liu, X. Zou, H.-M. Cheng, Chem. Rev. 2018, 118, 6091.
- 23Z. Guo, J. Zhang, X. Liu, L. Wang, L. Xiong, J. Huang, Adv. Funct. Mater. 2023, 33, 2305508.
- 24K. Cho, J. Pak, S. Chung, T. Lee, ACS Nano 2019, 13, 9713.
- 25S. M. Obaidulla, A. Supina, S. Kamal, Y. Khan, M. Kralj, Nanoscale Horiz. 2024, 9, 44.
- 26M. Gobbi, E. Orgiu, P. Samorì, Adv. Mater. 2018, 30, 1706103.
- 27J. L. Suter, D. Groen, P. V. Coveney, Adv. Mater. 2015, 27, 966.
- 28L. Yin, R. Cheng, Y. Wen, C. Liu, J. He, Adv. Mater. 2021, 33, 2007081.
- 29E. H. Cho, W. G. Song, C. J. Park, J. Kim, S. Kim, J. Joo, Nano Res. 2015, 8, 790.
- 30D. Jariwala, T. J. Marks, M. C. Hersam, Nature Mater 2017, 16, 170.
- 31H. Qiu, Y. Zhao, Z. Liu, M. Herder, S. Hecht, P. Samorì, Adv. Mater. 2019, 31, 1903402.
- 32V. K. Sangwan, M. C. Hersam, Nat. Nanotechnol. 2020, 15, 517.
- 33H. Ghodrati, N. Antonatos, Z. Sofer, Small 2019, 15, 1903495.
- 34J. Khan, R. T. M. Ahmad, J. Tan, R. Zhang, U. Khan, B. Liu, SmartMat 2023, 4, e1156.
- 35J. Sun, Y. Choi, Y. J. Choi, S. Kim, J. Park, S. Lee, J. H. Cho, Adv. Mater. 2019, 31, 1803831.
- 36M. Li, Q. Zhao, S. Zhang, D. Li, H. Li, X. Zhang, B. Xing, Environ Sci-nano 2020, 7, 414.
- 37N. Ilyas, J. Wang, C. Li, D. Li, H. Fu, D. Gu, X. Jiang, F. Liu, Y. Jiang, W. Li, Adv Funct Materials 2022, 32, 2110976.
- 38X. Zeng, M. Luo, G. Liu, X. Wang, W. Tao, Y. Lin, X. Ji, L. Nie, L. Mei, Adv. Sci. 2018, 5, 1800510.
- 39C. Hu, Q. Xiao, Y. Ren, M. Zhao, G. Dun, H. Wu, X. Li, Q. Yang, B. Sun, Y. Peng, F. Yan, Q. Wang, H. Zhang, Adv. Funct. Mater. 2018, 28, 1805311.
- 40Z. Huang, Y. Li, Y. Zhang, J. Chen, J. He, J. Jiang, Int J Extreme Manuf 2024, 6, 032003.
- 41Z. Dai, L. Liu, Z. Zhang, Adv. Mater. 2019, 31, 1805417.
- 42R. Gusmão, Z. Sofer, M. Pumera, ACS Nano 2018, 12, 5666.
- 43Y. Liu, M. Chen, S. Yang, InfoMat 2021, 3, 231.
- 44J. Sturala, Z. Sofer, M. Pumera, Angew Chem Int Ed 2019, 58, 7551.
- 45I. Amin, E. Batyrev, A. De Vooys, H. Van Der Weijde, N. R. Shiju, 2D Mater. 2022, 9, 032002.
- 46A. A. Mohamed, Z. Salmi, S. A. Dahoumane, A. Mekki, B. Carbonnier, M. M. Chehimi, Adv. Colloid Interface Sci. 2015, 225, 16.
- 47C. Wetzl, A. Silvestri, M. Garrido, H. Hou, A. Criado, M. Prato, Angew Chem Int Ed 2023, 62, e202212857.
- 48G. Indiveri, E. Chicca, R. Douglas, IEEE Transactions on Neural Networks 2006, 17, 211.
- 49R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, H. S. Seung, Nature 2000, 405, 947.
- 50S. Furber, J. Neural Eng. 2016, 13, 051001.
- 51L. F. Abbott, W. G. Regehr, Nature 2004, 431, 796.
- 52P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, D. S. Modha, Science 2014, 345, 668.
- 53O. Krestinskaya, A. P. James, L. O. Chua, Ieee T Neur Net Lear 2020, 31, 4.
- 54S. B. Furber, F. Galluppi, S. Temple, L. A. Plana, P Ieee 2014, 102, 652.
- 55J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang, S. Wu, G. Wang, Z. Zou, Z. Wu, W. He, F. Chen, N. Deng, S. Wu, Y. Wang, Y. Wu, Z. Yang, C. Ma, G. Li, W. Han, H. Li, H. Wu, R. Zhao, Y. Xie, L. Shi, Nature 2019, 572, 106.
- 56D. Sarkar, J. Tao, W. Wang, Q. Lin, M. Yeung, C. Ren, R. Kapadia, ACS Nano 2018, 12, 1656.
- 57C. D. James, J. B. Aimone, N. E. Miner, C. M. Vineyard, F. H. Rothganger, K. D. Carlson, S. A. Mulder, T. J. Draelos, A. Faust, M. J. Marinella, J. H. Naegle, S. J. Plimpton, Biologically Inspired Cognitive Architectures 2017, 19, 49.
- 58G. Indiveri, E. Chicca, R. J. Douglas, Cogn Comput 2009, 1, 119.
- 59G. Indiveri, B. Linares-Barranco, T. Hamilton, A. van Schaik, R. Etienne-Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Häfliger, S. Renaud, J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele, S. SAÏGHI, T. Serrano-Gotarredona, J. Wijekoon, Y. Wang, K. Boahen, Frontiers in Neuroscience 2011, 73.
- 60J. Jiang, J. Guo, X. Wan, Y. Yang, H. Xie, D. Niu, J. Yang, J. He, Y. Gao, Q. Wan, Small 2017, 13, 1700933.
- 61Y. Chen, B. Zhang, G. Liu, X. Zhuang, E.-T. Kang, Chem. Soc. Rev. 2012, 41, 4688.
- 62J. Park, M. Yan, Acc. Chem. Res. 2013, 46, 181.
- 63M. Majdoub, Z. Anfar, A. Amedlous, ACS Nano 2020, 14, 12390.
- 64A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 2009, 81, 109.
- 65C. Zhang, Y. Li, C. Ma, Q. Zhang, 2688–4046 2022, 2, 2100086.
- 66L. Daukiya, J. Seibel, S. De Feyter, Adv Phys-x 2019, 4, 1625723.
- 67Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, S.-C. Zhang, Phys. Rev. Lett. 2013, 111, 136804.
- 68A. Hirsch, F. Hauke, Angew Chem Int Ed 2018, 57, 4338.
- 69G. He, T. Dong, Z. Yang, P. Ohlckers, Chem. Mater. 2019, 31, 9917.
- 70M. Palummo, A. N. D'Auria, J. C. Grossman, G. Cicero, J Phys-condens Mat 2019, 31, 235701.
- 71D. Saini, Int. J. Mater. Res. 2015, 106, 176.
- 72Z. Xiang, Q. Dai, J. Chen, L. Dai, Adv. Mater. 2016, 28, 6253.
- 73K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nature Chem 2010, 2, 1015.
- 74A. Mitrović, G. Abellán, A. Hirsch, RSC Adv. 2021, 11, 26093.
- 75M. Van Druenen, Adv Materials Inter 2020, 7, 2001102.
- 76X. Liu, K. Chen, X. Li, Q. Xu, J. Weng, J. Xu, Adv. Mater. 2021, 33, 2005924.
- 77A. Ienco, G. Manca, M. Peruzzini, C. Mealli, Dalton Trans. 2018, 47, 17243.
- 78S. Thurakkal, X. Zhang, Adv. Sci. 2020, 7, 1902359.
- 79S. Bertolazzi, M. Gobbi, Y. Zhao, C. Backes, P. Samorì, Chem. Soc. Rev. 2018, 47, 6845.
- 80M. C. Rodríguez González, R. Sasikumar, S. De Feyter, Surf. Rev. Lett. 2021, 28, 2140002.
10.1142/S0218625X21400023 Google Scholar
- 81K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, J. Mater. Chem. C 2017, 5, 11992.
- 82F. Zheng, G. Zhou, Z. Liu, J. Wu, W. Duan, B.-L. Gu, S. B. Zhang, Phys. Rev. B 2008, 78, 205415.
- 83W. L. B. Huey, J. E. Goldberger, Chem. Soc. Rev. 2018, 47, 6201.
- 84S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, H. Zeng, Angew. Chem., Int. Ed. 2016, 55, 1666.
- 85H. He, J. Klinowski, M. Forster, A. Lerf, Chem. Phys. Lett. 1998, 287, 53.
- 86S. Wang, C. Chen, Z. Yu, Y. He, X. Chen, Q. Wan, Y. Shi, D. W. Zhang, H. Zhou, X. Wang, P. Zhou, Adv. Mater. 2019, 31, 1806227.
- 87S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, J. H. Cho, ACS Nano 2014, 8, 8285.
- 88H. Wang, X. Wang, Y. Chen, S. Zhang, W. Jiang, X. Zhang, J. Qin, J. Wang, X. Li, Y. Pan, F. Liu, Z. Shi, H. Zhang, L. Tu, H. Wang, H. Long, D. Li, T. Lin, J. Wang, Y. Zhan, H. Shen, X. Meng, J. Chu, Adv. Opt. Mater. 2020, 8, 1901402.
- 89T. Zhu, L. Yuan, Y. Zhao, M. Zhou, Y. Wan, J. Mei, L. Huang, Sci. Adv. 2018, 4, eaao3104.
- 90J. Li, P. Liu, H. Huang, Y. Li, Y. Tang, D. Mei, C. Zhong, Acs Sustain Chem Eng 2020, 8, 5175.
- 91Z. Xu, M. He, Q. Wu, C. Wu, X. Li, B. Liu, M. Tang, J. Yao, G. Wei, Adv. Sci. 2023, 10, 2207743.
- 92J. Liu, Z. Zeng, X. Cao, G. Lu, L. Wang, Q. Fan, W. Huang, H. Zhang, Small 2012, 8, 3517.
- 93C. Zhong, V. K. Sangwan, C. Wang, H. Bergeron, M. C. Hersam, E. A. Weiss, J. Phys. Chem. Lett. 2018, 9, 2484.
- 94G. Liu, Q.-D. Ling, E. Y. H. Teo, C.-X. Zhu, D. S.-H. Chan, K.-G. Neoh, E.-T. Kang, ACS Nano 2009, 3, 1929.
- 95K. C. Knirsch, N. C. Berner, H. C. Nerl, C. S. Cucinotta, Z. Gholamvand, N. McEvoy, Z. Wang, I. Abramovic, P. Vecera, M. Halik, S. Sanvito, G. S. Duesberg, V. Nicolosi, F. Hauke, A. Hirsch, J. N. Coleman, C. Backes, ACS Nano 2015, 9, 6018.
- 96S. Ng, M. Pumera, Adv. Mater. 2023, 35, 2207196.
- 97J. Miao, L. Wu, Z. Bian, Q. Zhu, T. Zhang, X. Pan, J. Hu, W. Xu, Y. Wang, Y. Xu, B. Yu, W. Ji, X. Zhang, J. Qiao, P. Samorì, Y. Zhao, ACS Nano 2022, 16, 20647.
- 98R. I. Gearba, M. Kim, K. M. Mueller, P. A. Veneman, K. Lee, B. J. Holliday, C. K. Chan, J. R. Chelikowsky, E. Tutuc, K. J. Stevenson, Adv. Mater. Interfaces 2016, 3, 1600196.
- 99S. Baachaoui, L. Sementa, R. Hajlaoui, S. Aldulaijan, A. Fortunelli, A. Dhouib, N. Raouafi, J. Phys. Chem. C 2023, 127, 15474.
- 100K. Wang, M. Kapitzke, L. Green, B. Paulus, J. Mater. Chem. C 2022, 10, 6009.
- 101H. Shi, S. Fu, Y. Liu, C. Neumann, M. Wang, H. Dong, P. Kot, M. Bonn, H. I. Wang, A. Turchanin, O. G. Schmidt, A. Shaygan Nia, S. Yang, X. Feng, Adv. Mater. 2021, 33, 2105694.
- 102A. Mitrović, S. Wild, V. Lloret, M. Fickert, M. Assebban, B. G. Márkus, F. Simon, F. Hauke, G. Abellán, A. Hirsch, Chemistry A European J 2021, 27, 3361.
- 103O. D. Restrepo, R. Mishra, J. E. Goldberger, W. Windl, J. Appl. Phys. 2014, 115, 033711.
- 104L. O. Jones, M. A. Mosquera, M. A. Ratner, G. C. Schatz, Acs Appl Mater Inter 2020, 12, 4607.
- 105H. O. Sillin, R. Aguilera, H.-H. Shieh, A. V. Avizienis, M. Aono, A. Z. Stieg, J. K. Gimzewski, Nanotechnology 2013, 24, 384004.
- 106M. D. Godfrey, D. F. Hendry, Ieee Ann Hist Comput 1993, 15, 11.
- 107A. S. Sokolov, H. Abbas, Y. Abbas, C. Choi, J. Semicond. 2021, 42, 013101.
- 108J. Tang, F. Yuan, X. Shen, Z. Wang, M. Rao, Y. He, Y. Sun, X. Li, W. Zhang, Y. Li, B. Gao, H. Qian, G. Bi, S. Song, J. J. Yang, H. Wu, Adv. Mater. 2019, 31, 1902761.
- 109Y. Zhao, J. Jiang, J. Nanosci. Nanotechnol. 2018, 18, 8003.
- 110L. Shao, Y. Zhao, Y. Liu, Adv. Funct. Mater. 2021, 31, 2101951.
- 111C. Zhang, Y. Chen, M. Yi, Y. Zhu, T. Li, L. Liu, L. Wang, L. Xie, W. Huang, Sci Sin Inform. 2018, 48, 115.
10.1360/N112017-00022 Google Scholar
- 112Proc. R. Soc. Lond. B. 1965, 161, 483.
- 113C.-S. Yang, D.-S. Shang, Y.-S. Chai, L.-Q. Yan, B.-G. Shen, Y. Sun, Phys. Chem. Chem. Phys. 2017, 19, 4190.
- 114W. Hu, J. Jiang, D. Xie, B. Liu, J. Yang, J. He, J. Mater. Chem. C 2019, 7, 682.
- 115Y. Cheng, H. Li, B. Liu, L. Jiang, M. Liu, H. Huang, J. Yang, J. He, J. Jiang, Small 2020, 16, 2005217.
- 116J.-X. Shen, D.-S. Shang, Y.-S. Chai, S.-G. Wang, B.-G. Shen, Y. Sun, Adv. Mater. 2018, 30, 1706717.
- 117E. R. Kandel, Science 2001, 294, 1030.
- 118B. Katz, R. Miledi, J. Physiol. 1968, 195, 481.
- 119S. J. Martin, P. D. Grimwood, R. G. M. Morris, Annu. Rev. Neurosci. 2000, 23, 649.
- 120T. Masquelier, R. Guyonneau, S. J. Thorpe, Neural Computation 2009, 21, 1259.
- 121A. Saudargiene, B. Porr, F. Wörgötter, Neural Computation 2004, 16, 595.
- 122Z. Lv, Y. Wang, J. Chen, J. Wang, Y. Zhou, S.-T. Han, Chem. Rev. 2020, 120, 3941.
- 123K. Roy, A. Jaiswal, P. Panda, Nature 2019, 575, 607.
- 124Z. Zhang, D. Yang, H. Li, C. Li, Z. Wang, L. Sun, H. Yang, Neuromorph. Comput. Eng. 2022, 2, 032004.
10.1088/2634-4386/ac8a6a Google Scholar
- 125X. Li, S. Li, B. Tang, J. Liao, Q. Chen, Adv. Electron. Mater. 2022, 8, 2200343.
- 126Y. Li, G. Shen, Cell Reports Physical Science 2022, 3, 101037.
- 127H. Tian, Q. Guo, Y. Xie, H. Zhao, C. Li, J. J. Cha, F. Xia, H. Wang, Adv. Mater. 2016, 28, 4991.
- 128L. Chua, IEEE Transactions on Circuit Theory 1971, 18, 507.
- 129H. Kim, J. S. Han, J. Choi, S. Y. Kim, H. W. Jang, Small Methods 2018, 2, 1700310.
- 130X. Zhang, H. Xie, Z. Liu, C. Tan, Z. Luo, H. Li, J. Lin, L. Sun, W. Chen, Z. Xu, L. Xie, W. Huang, H. Zhang, Angew Chem Int Ed 2015, 54, 3653.
- 131S. G. Kim, J. S. Han, H. Kim, S. Y. Kim, H. W. Jang, Adv Materials Technologies 2018, 3, 1800457.
- 132W. Xu, H. Cho, Y.-H. Kim, Y.-T. Kim, C. Wolf, C.-G. Park, T.-W. Lee, Adv. Mater. 2016, 28, 5916.
- 133G. Liu, X. Zhuang, Y. Chen, B. Zhang, J. Zhu, C.-X. Zhu, K.-G. Neoh, E.-T. Kang, Appl. Phys. Lett. 2009, 95, 253301.
- 134X.-D. Zhuang, Y. Chen, G. Liu, P.-P. Li, C.-X. Zhu, E.-T. Kang, K.-G. Noeh, B. Zhang, J.-H. Zhu, Y.-X. Li, Adv. Mater. 2010, 22, 1731.
- 135Y. Cao, X. Tian, J. Gu, B. Liu, B. Zhang, S. Song, F. Fan, Y. Chen, Angew. Chem., Int. Ed. 2018, 57, 4543.
- 136F. Fan, B. Zhang, S. Song, B. Liu, Y. Cao, Y. Chen, Adv. Electron. Mater. 2018, 4, 1700397.
- 137M. Gu, B. Zhang, B. Liu, Q. Che, Z. Zhao, Y. Chen, J. Mater. Chem. C 2020, 8, 1231.
- 138B. Zhang, L. Liu, L. Wang, B. Liu, X. Tian, Y. Chen, Carbon 2018, 134, 500.
- 139Q. Jiang, B. Zhang, Q. Yan, F. Fan, G. Liu, Y. Chen, J. Mater. Chem. C 2023, 11, 4500.
- 140Q. Yan, F. Fan, C. Sun, M. E. El-Khouly, H. Liu, Y. Zheng, B. Zhang, G. Liu, Y. Chen, J. Mater. Chem. C 2021, 9, 6930.
- 141Q. Che, J. Liu, Q. Chen, K. Zhao, B. Zhang, H. He, X. Wang, K. Wang, Y. Chen, Acs Appl Mater Inter 2024, 16, 19947.
- 142C. Wang, X. Xu, X. Pi, M. D. Butala, W. Huang, L. Yin, W. Peng, M. Ali, S. C. Bodepudi, X. Qiao, Y. Xu, W. Sun, D. Yang, Nat. Commun. 2022, 13, 5216.
- 143T. M. Trung Huynh, T. L. Nguyen, T. H. Phan, J. Electrochem. Soc. 2023, 170, 106510.
- 144P. Ramesh, S. Amalraj, P. Arunachalam, M. Gopiraman, A. M. Al-Mayouf, S. Vasanthkumar, Synthetic Met 2021, 272, 116656.
- 145J. T. Lee, B. C. Wyatt, G. A. Davis, A. N. Masterson, A. L. Pagan, A. Shah, B. Anasori, R. Sardar, ACS Nano 2021, 15, 19600.
- 146S. Baachaoui, L. Sementa, R. Hajlaoui, S. Aldulaijan, A. Fortunelli, A. Dhouib, N. Raouafi, J. Phys. Chem. C 2023, 127, 15474.
- 147L. Martín-Pérez, S. Medina Rivero, M. Vázquez Sulleiro, A. Naranjo, I. J. Gómez, M. L. Ruíz-González, A. Castellanos-Gomez, M. Garcia-Hernandez, E. M. Pérez, E. Burzurí, ACS Nano 2023, 17, 3007.
- 148J. Su, T. Mou, J. Wen, B. Wang, Appl. Surf. Sci. 2020, 518, 146210.
- 149T. Helbich, A. Lyuleeva, T. Ludwig, L. M. Scherf, T. F. Fässler, P. Lugli, B. Rieger, Adv Funct Materials 2016, 26, 6711.
- 150Y. Xia, S. Sevim, J. P. Vale, J. Seibel, D. Rodríguez-San-Miguel, D. Kim, S. Pané, T. S. Mayor, S. De Feyter, J. Puigmartí-Luis, Nat. Commun. 2022, 13, 7006.
- 151M. M. Ayyub, M. Barua, S. Acharya, C. N. R. Rao, Small 2022, 18, 2203554.
- 152M. Barua, M. M. Ayyub, S. Acharya, C. N. R. Rao, Nanoscale 2022, 14, 13834.
- 153S. Thurakkal, X. Zhang, Adv. Sci. 2020, 7, 1902359.
- 154X. Chen, S. Zhang, K. Wu, Z. Xu, H. Li, Y. Meng, X. Ma, L. Liu, L. Li, Adv. Electron. Mater. 2016, 2, 1500409.
- 155Y.-L. Hsieh, W.-H. Su, C.-C. Huang, C.-Y. Su, Acs Appl Mater Inter 2020, 12, 37375.
- 156L. Valenta, P. Kovaříček, V. Valeš, Z. Bastl, K. A. Drogowska, T. A. Verhagen, R. Cibulka, M. Kalbáč, Angew Chem Int Ed 2019, 58, 1324.
- 157T. J. Neubert, J. Krieg, A. Yadav, K. Balasubramanian, Acs Appl Electron Ma 2022, 4, 4668.
- 158J. Lu, A. Lipatov, N. S. Vorobeva, D. S. Muratov, A. Sinitskii, Adv. Electron. Mater. 2018, 4, 1800021.
- 159J. M. Englert, P. Vecera, K. C. Knirsch, R. A. Schäfer, F. Hauke, A. Hirsch, ACS Nano 2013, 7, 5472.
- 160K. Wang, M. Kapitzke, L. Green, B. Paulus, J. Mater. Chem. C 2022, 10, 6009.
- 161F. Shu, W. Chen, G. Liu, Processes 2023, 11, 3429.
- 162D. Xie, Y. Li, J. He, J. Jiang, Sci. China Mater. 2023, 66, 4814.
- 163D. Xie, L. Wei, M. Xie, L. Jiang, J. Yang, J. He, J. Jiang, Adv. Funct. Mater. 2021, 31, 2010655.
- 164D. Xie, G. Gao, B. Tian, Z. Shu, H. Duan, W. Zhao, J. He, J. Jiang, Adv. Mater. 2023, 35, 2212118.
- 165C. Wan, P. Cai, X. Guo, M. Wang, N. Matsuhisa, L. Yang, Z. Lv, Y. Luo, X. J. Loh, X. Chen, Nat. Commun. 2020, 11, 4602.