Optimizing Active Layer Morphology of Organic Solar Cells by Constructing Random Copolymers with Simple Third Units
Qian Xie
Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096 China
Search for more papers by this authorChunyu Qiao
Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096 China
Search for more papers by this authorJie Fang
Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096 China
Search for more papers by this authorDongdong Xia
Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096 China
Search for more papers by this authorFeng Ding
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
Search for more papers by this authorQian Wang
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
Search for more papers by this authorGuodong Xu
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
Search for more papers by this authorSiyu Shan
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
Search for more papers by this authorCorresponding Author
Xunfan Liao
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yiwang Chen
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorQian Xie
Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096 China
Search for more papers by this authorChunyu Qiao
Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096 China
Search for more papers by this authorJie Fang
Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096 China
Search for more papers by this authorDongdong Xia
Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096 China
Search for more papers by this authorFeng Ding
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
Search for more papers by this authorQian Wang
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
Search for more papers by this authorGuodong Xu
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
Search for more papers by this authorSiyu Shan
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
Search for more papers by this authorCorresponding Author
Xunfan Liao
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yiwang Chen
Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The molecular structure of the polymer PM6 is elaborately modified through random copolymerization by incorporating simple units of either difluoro-substituted thiophene (2FT) or dicyano-substituted thiophene (2CNT). The incorporation of the 2FT unit significantly enhanced the coplanarity of the random copolymers, leading to improved molecular crystallinity, whereas the introduction of the 2CNT unit featured the opposite effect. Thanks to the optimized morphology resembling a fiber-like interpenetrating network structure, the organic solar cells based on PM6-10%2FT:IT4F showed higher and more balanced charge mobilities, achieving a power conversion efficiency (PCE) of 12.65%, which is comparable to that of PM6-based devices. For comparison, the 2CN-series random copolymers-based devices exhibited lower PCEs of ˂12%. Interestingly, a superior PCE close to 19.0% is achieved in PM6:L8-BO:PM6-20%2CN based ternary device due to the significant improvement in open-circuit voltage. This work demonstrates that the crystallinity of donor polymers can be enhanced by introducing simple structural units to strengthen the coplanarity of the backbone, thereby achieving an optimized morphology that promotes favorable charge transport.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202400458-sup-0001-SuppMat.docx2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Song, Z. Bo, Chin. Chem. Lett. 2023, 34, 108163.
- 2L. Lu, T. Zheng, Q. Wu, A. M. Schneider, D. Zhao, L. Yu, Chem. Rev. 2015, 115, 12666.
- 3S. A. Hashemi, S. Ramakrishna, A. G. Aberle, Energy Environ. Sci. 2020, 13, 685.
- 4S. Li, Z. Li, X. Wan, Y. Chen, eScience 2023, 3, 100085.
- 5G. Zhang, F. R. Lin, F. Qi, T. Heumuller, A. Distler, H. J. Egelhaaf, N. Li, P. C. Y. Chow, C. J. Brabec, A. K. Jen, H. L. Yip, Chem. Rev. 2022, 122, 14180.
- 6D. Xia, S. Zhou, W. L. Tan, S. Karuthedath, C. Xiao, C. Zhao, F. Laquai, C. R. McNeill, W. Li, Aggregate 2023, 4, e279.
- 7W. Gao, F. Qi, Z. Peng, F. R. Lin, K. Jiang, C. Zhong, W. Kaminsky, Z. Guan, C. S. Lee, T. J. Marks, H. Ade, A. K. Jen, Adv. Mater. 2022, 34, 2202089.
- 8B. Fan, W. Gao, X. Wu, X. Xia, Y. Wu, F. R. Lin, Q. Fan, X. Lu, W. J. Li, W. Ma, A. K. Jen, Nat. Commun. 2022, 13, 5946.
- 9Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 2022, 6, 171.
- 10Y. Cui, P. Zhu, X. Xia, X. Lu, X. Liao, Y. Chen, Chin. Chem. Lett. 2023, 34, 107902.
- 11S. Chen, L. Hong, M. Dong, W. Deng, L. Shao, Y. Bai, K. Zhang, C. Liu, H. Wu, F. Huang, Angew. Chem. Int Ed. 2023, 62, e202213869.
- 12C. Zhao, Y. Guo, Y. Zhang, N. Yan, S. You, W. Li, J. Mater. Chem. A 2019, 7, 10174.
- 13X. Li, X. Kong, G. Sun, Y. Li, eScience 2023, 3, 100171.
- 14F. Cheng, S. Lai, Y. Zhang, L. Xue, X. Xia, P. Zhu, X. Lu, X. Liao, Y. Chen, Chin. J. Polym. Sci. 2024, 42, 311.
- 15C. Zhao, Z. Zhang, F. Han, D. Xia, C. Xiao, J. Fang, Y. Zhang, B. Wu, S. You, Y. Wu, W. Li, Angew. Chem. Int. Ed. 2021, 60, 8526.
- 16J. Zhang, Q. Huang, K. Zhang, T. Jia, J. Jing, Y. Chen, Y. Li, Y. Chen, X. Lu, H. Wu, F. Huang, Y. Cao, Energy Environ. Sci. 2022, 15, 4561.
- 17H. Sun, T. Liu, J. Yu, T.-K. Lau, G. Zhang, Y. Zhang, M. Su, Y. Tang, R. Ma, B. Liu, J. Liang, K. Feng, X. Lu, X. Guo, F. Gao, H. Yan, Energy Environ. Sci. 2019, 12, 3328.
- 18X. Xu, K. Feng, Z. Bi, W. Ma, G. Zhang, Q. Peng, Adv. Mater. 2019, 31, 1901872.
- 19L. Zhou, L. Meng, J. Zhang, C. Zhu, S. Qin, I. Angunawela, Y. Wan, H. Ade, Y. Li, Adv. Funct. Mater. 2021, 32, 2109271.
- 20Q. Xie, X. Liao, L. Chen, M. Zhang, K. Gao, B. Huang, H. Xu, F. Liu, A. K. Y. Jen, Y. Chen, Nano Energy 2019, 61, 228.
- 21H. Yang, Y. Wu, Y. Dong, C. Cui, Y. Li, ACS Appl. Mater. Interfaces 2019, 11, 40339.
- 22B. Pang, C. Liao, X. Xu, S. Peng, J. Xia, Y. Guo, Y. Xie, Y. Chen, C. Duan, H. Wu, R. Li, Q. Peng, Adv. Mater. 2023, 35, 2211871.
- 23T. Zhang, Y. Xu, H. Yao, J. Zhang, P. Bi, Z. Chen, J. Wang, Y. Cui, L. Ma, K. Xian, Z. Li, X. Hao, Z. Wei, J. Hou, Energy Environ. Sci. 2023, 16, 1581.
- 24M. Jeong, S. Chen, S. M. Lee, Z. Wang, Y. Yang, Z.-G. Zhang, C. Zhang, M. Xiao, Y. Li, C. Yang, Adv. Energy Mater. 2018, 8, 1702166.
- 25I. Shin, H. j. Ahn, J. H. Yun, J. W. Jo, S. Park, S.-y. Joe, J. Bang, H. J. Son, Adv. Energy Mater. 2018, 8, 1701405.
- 26M. H. Hoang, G. E. Park, S. Choi, C. G. Park, S. H. Park, T. V. Nguyen, S. Kim, K. Kwak, M. J. Cho, D. H. Choi, J. Mater. Chem. C 2019, 7, 111.
- 27S. J. Jeon, Y. W. Han, Y. H. Kim, D. K. Moon, Sol. RRL 2020, 4, 202000074.
- 28Y. Cui, H. Yao, L. Hong, T. Zhang, Y. Xu, K. Xian, B. Gao, J. Qin, J. Zhang, Z. Wei, J. Hou, Adv. Mater. 2019, 31, 1808356.
- 29Y. Cui, Z. Chen, P. Zhu, W. Ma, H. Zhu, X. Liao, Y. Chen, Sci. China Chem. 2023, 66, 1179.
- 30J. Wu, Q. Fan, M. Xiong, Q. Wang, K. Chen, H. Liu, M. Gao, L. Ye, X. Guo, J. Fang, Q. Guo, W. Su, Z. Ma, Z. Tang, E. Wang, H. Ade, M. Zhang, Nano Energy 2021, 82, 105679.
- 31H. Guo, Y. Zhang, L. Chen, X. Liao, Q. Xie, Y. Cui, B. Huang, C. Yang, Y. Chen, J. Mater. Chem. A 2019, 7, 27394.
- 32X. Liao, F. Wu, Y. An, Q. Xie, L. Chen, Y. Chen, Macromol. Rapid Commun. 2017, 38, 1600556.
- 33H. Wang, H. Lu, Y. N. Chen, G. Ran, A. Zhang, D. Li, N. Yu, Z. Zhang, Y. Liu, X. Xu, W. Zhang, Q. Bao, Z. Tang, Z. Bo, Adv. Mater. 2022, 34, 2105483.
- 34Y. Shi, R. Ma, X. Wang, T. Liu, Y. Li, S. Fu, K. Yang, Y. Wang, C. Yu, L. Jiao, X. Wei, J. Fang, D. Xue, H. Yan, ACS Appl. Mater. Interfaces 2022, 14, 5740.
- 35H. Zhang, S. Li, B. Xu, H. Yao, B. Yang, J. Hou, J. Mater. Chem. A 2016, 4, 18043.
- 36X. Yuan, Y. Zhao, Y. Zhang, D. Xie, W. Deng, J. Li, H. Wu, C. Duan, F. Huang, Y. Cao, Adv. Funct. Mater. 2022, 32, 2201142.
- 37X. Yuan, Y. Zhao, D. Xie, L. Pan, X. Liu, C. Duan, F. Huang, Y. Cao, Joule 2022, 6, 647.
- 38A. Casey, J. P. Green, P. Shakya Tuladhar, M. Kirkus, Y. Han, T. D. Anthopoulos, M. Heeney, J. Mater. Chem. A 2017, 5, 6465.
- 39J.-Y. Balandier, F. Quist, C. Amato, S. Bouzakraoui, J. Cornil, S. Sergeyev, Y. Geerts, Tetrahedron 2010, 66, 9560.
- 40C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat Energy. 2021, 6, 605.
- 41X. Liao, M. Liu, H. Pei, P. Zhu, X. Xia, Z. Chen, Y. Zhang, Y. Wu, C. Cui, G. Xu, M. Gao, L. Ye, R. Ma, T. Liu, X. Lu, H. Zhu, Y. Chen, Angew. Chem. Int. Ed. 2024, 11, e202318595.
- 42X. Wang, L. Zhang, L. Hu, Z. Xie, H. Mao, L. Tan, Y. Zhang, Y. Chen, Adv. Funct. Mater. 2021, 31, 2102291.