A High-Quality Mixed Matrix Membrane with Nanosheets Assembled and Uniformly Dispersed Fillers for Ethanol Recovery
Siyu Pang
National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorLiang Ma
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai, 201208 P. R. China
Search for more papers by this authorYongfu Yang
State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062 P. R. China
Search for more papers by this authorHuidong Chen
High-Tech Reacher Institute, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorLu Lu
Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorShihui Yang
State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062 P. R. China
Search for more papers by this authorJan Baeyens
Department of Chemical Engineering, Sint-Katelijne-Waver, Ku Leuven, 2860 Belgium
Search for more papers by this authorCorresponding Author
Zhihao Si
National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Peiyong Qin
National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorSiyu Pang
National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorLiang Ma
State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, SINOPEC Shanghai Research Institute of Petrochemical Technology Co., Ltd., Shanghai, 201208 P. R. China
Search for more papers by this authorYongfu Yang
State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062 P. R. China
Search for more papers by this authorHuidong Chen
High-Tech Reacher Institute, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorLu Lu
Paris Curie Engineer School, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
Search for more papers by this authorShihui Yang
State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan, 430062 P. R. China
Search for more papers by this authorJan Baeyens
Department of Chemical Engineering, Sint-Katelijne-Waver, Ku Leuven, 2860 Belgium
Search for more papers by this authorCorresponding Author
Zhihao Si
National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Peiyong Qin
National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 P. R. China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
A high-quality filler within mixed matrix membranes, coupled with uniform dispersity, endows a high-efficiency transfer pathway for the significant improvement on separation performance. In this work, a zeolite-typed MCM-22 filler is reported that is doped into polydimethylsiloxane (PDMS) matrix by ultrafast photo-curing technique. The unique structure of nanosheets assembly layer by layer endows the continuous transfer channels towards penetrate molecules because of the inter-connective nanosheets within PDMS matrix. Furthermore, an ultrafast freezing effect produced by fast photo-curing is used to overcome the key issue, namely filler aggregation, and further eliminates defects. When pervaporative separating a 5 wt% ethanol aqueous solution, the resulting MCM-22/PDMS membrane exhibits an excellent membrane flux of 1486 g m−2 h−1 with an ethanol separation factor of 10.2. Considering a biobased route for ethanol production, the gas stripping and vapor permeation through this membrane also shows a great enrichment performance, and the concentrated ethanol is up to 65.6 wt%. Overall, this MCM-22/PDMS membrane shows a high separation ability for ethanol benefited from a unique structure deign of fillers and ultrafast curing speed of PDMS, and has a great potential for bioethanol separation from cellulosic ethanol fermentation.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
marc202400384-sup-0001-SuppMat.docx1.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Li, J. Shen, K. Guan, G. Liu, H. Zhou, W. Jin, J. Membr. Sci. 2016, 510, 338.
- 2H. Wang, C. Li, Q. Xu, C. Liu, Z. Zhang, X. Du, X. Hao, G. Guan, Sep. Purif. Technol. 2021, 268, 118708.
- 3P. Cai, J. Li, N. Zhang, D. Song, N. Wang, Q.-F. An, J. Membr. Sci. 2023, 668, 121254.
- 4G. Liu, W. Jin, J. Membr. Sci. 2021, 636, 119557.
- 5S. Pang, Z. Si, G. Li, H. Wu, Y. Cui, C. Zhang, C. Ren, S. Yang, S. Pang, P. Qin, J. Membr. Sci. 2022, 661, 120920.
- 6Z. Si, Z. Wang, D. Cai, G. Li, S. Li, P. Qin, Sep. Purif. Technol. 2020, 241, 116545.
- 7C. Ren, Z. Si, Y. Qu, S. Li, H. Wu, F. Meng, X. Zhang, Y. Wang, C. Liu, P. Qin, Sep. Purif. Technol. 2022, 284, 120255.
- 8T. Zhu, X. Yu, M. Yi, Y. Wang, ACS Sustainable Chem. Eng. 2020, 8, 12664.
- 9W. Zheng, D. Wang, X. Ruan, Y. Dai, X. Yan, X. Zhang, X. Li, X. Jiang, G. He, J. Membr. Sci. 2022, 661, 120882.
- 10Z. Si, D. Cai, S. Li, C. Zhang, P. Qin, T. Tan, J. Membr. Sci. 2019, 579, 309.
- 11T. Zhu, S. Xu, F. Yu, X. Yu, Y. Wang, J. Membr. Sci. 2020, 598, 117681.
- 12S. Liu, G. Liu, X. Zhao, W. Jin, J. Membr. Sci. 2013, 446, 181.
- 13Y. Li, L. H. Wee, J. A. Martens, I. F. J. Vankelecom, J. Mater. Chem. A 2014, 2, 10034.
- 14A. Khan, M. Ali, A. Ilyas, P. Naik, I. F. J. Vankelecom, M. A. Gilani, M. R. Bilad, Z. Sajjad, A. L. Khan, Sep. Purif. Technol. 2018, 206, 50.
- 15Q. Li, L. Cheng, J. Shen, J. Shi, G. Chen, J. Zhao, J. Duan, G. Liu, W. Jin, Sep. Purif. Technol. 2017, 178, 105.
- 16R. Khan, I. Ul Haq, H. Mao, A.-S. Zhang, L.-H. Xu, H.-G. Zhen, Z.-P. Zhao, Sep. Purif. Technol. 2021, 256, 117804.
- 17Y. Chen, Z. Zhu, Y. Tian, L. Jiang, Exploration 2021, 1, 20210101.
- 18Y. Pan, T. Zhu, Q. Xia, X. Yu, Y. Wang, J. Environ. Chem. Eng. 2021, 9, 104977.
- 19L.-H. Xu, S.-H. Li, H. Mao, A.-S. Zhang, W.-W. Cai, T. Wang, Z.-P. Zhao, J. Mater. Chem. A 2021, 9, 11853.
- 20G. Li, Z. Si, D. Cai, Z. Wang, P. Qin, T. Tan, Sep. Purif. Technol. 2020, 236, 116263.
- 21Z. Liu, C. Liu, Z. Chen, H. Huang, Y. Liu, L. Xue, J. Sun, X. Wang, P. Xiong, J. Zhu, Exploration 2023, 3, 20220061.
- 22X. Yu, W. Ren, Nat. Sci. Open 2023, 2, 20230013.
10.1360/nso/20230013 Google Scholar
- 23X. Sui, Z. Yuan, Y. Yu, K. Goh, Y. Chen, Small 2020, 16, e2003400.
- 24H. Mao, S.-H. Li, A.-S. Zhang, L.-H. Xu, H.-X. Lu, J. Lv, Z.-P. Zhao, Sep. Purif. Technol. 2021, 272, 118813.
- 25L.-H. Xu, Y. Li, S.-H. Li, M.-Y. Lv, Z.-P. Zhao, J. Membr. Sci. 2022, 656, 120605.
- 26Z. Si, D. Cai, S. Li, G. Li, Z. Wang, P. Qin, Sep. Purif. Technol. 2019, 221, 286.
- 27X. Zhang, F. Liu, L. Xu, Z. Xu, C. Shen, G. Zhang, Q. Meng, C. Gao, J. Membr. Sci. 2022, 650, 120433.
- 28H. Yin, A. Khosravi, L. O'Connor, A. Q. Tagaban, L. Wilson, B. Houck, Q. Liu, M. L. Lind, Ind. Eng. Chem. Res. 2017, 56, 9167.
- 29Z. Si, G. Li, Z. Wang, D. Cai, S. Li, J. Baeyens, P. Qin, ACS Appl. Mater. Interfaces 2020, 12, 31887.
- 30Z. Si, Y. Wang, C. Liu, T. Xue, S. Yang, G. Li, C. Zhang, B. Chen, D. Cai, P. Qin, Green Chem. 2021, 23, 7053.
- 31Z. Si, J. Li, L. Ma, D. Cai, S. Li, J. Baeyens, J. Degreve, J. Nie, T. Tan, P. Qin, Angew Chem. Int. Ed. 2019, 58, 17175.
- 32Z. Si, C. Liu, G. Li, Z. Wang, J. Li, T. Xue, S. Yang, D. Cai, S. Li, H. Zhao, P. Qin, T. Tan, J. Membr. Sci. 2020, 612, 118472.
- 33Y. Zhuang, Z. Si, S. Pang, H. Wu, J. Baeyens, X. Zhang, P. Qin, J. Membr. Sci. 2023, 685, 121965.
- 34Z. Si, H. Shan, S. Hu, D. Cai, P. Qin, Chem. Eng. Res. Des. 2018, 136, 324.
- 35C. C. A. Corma, J. P∼rez-Pariente, Zeolites 1995, 15, 7.
- 36V. F. A. Corma, S. B. Pergher, T.h. L. M. Maesen, J. G. Buglass, Nature 1998, 396, 353.
- 37J. Ma, Q. Liu, D. Chen, S. Wen, T. Wang, Micro Nano Lett. 2015, 10, 140.
- 38S.-W. Cao, P. Xiao, J. Wang, Y. Sun, Y.-S. Shang, Y.-F. Ge, Q. Liu, Y.-J. Gong, G. Mo, Z.-H. Li, Pet. Sci. 2023, 20, 1922.
- 39E. Bello, V. J. Margarit, E. M. Gallego, F. Schuetze, C. Hengst, A. Corma, M. Moliner, Microporous Mesoporous Mater. 2020, 302, 110222.
- 40G. Li, Z. Si, S. Yang, Y. Zhuang, S. Pang, Y. Cui, J. Baeyens, P. Qin, J. Membr. Sci. 2022, 661, 120910.
- 41H. Mao, H.-G. Zhen, A. Ahmad, S.-H. Li, Y. Liang, J.-F. Ding, Y. Wu, L.-Z. Li, Z.-P. Zhao, J. Membr. Sci. 2019, 582, 307.
- 42A.-S. Zhang, S.-H. Li, A. Ahmad, H. Mao, L.-H. Xu, Z.-P. Zhao, J. Membr. Sci. 2021, 619, 118807.
- 43Y. Sun, H. Zhao, H. Mao, M. Duan, K. Wang, N. Bao, Z.-P. Zhao, H. Li, Sep. Purif. Technol. 2023, 304, 122041.
- 44C. Liu, Z. Si, H. Wu, Y. Zhuang, C. Zhang, G. Zhang, X. Zhang, P. Qin, Ind. Eng. Chem. Res. 2023, 62, 1523.
- 45P.-Y. Zheng, X.-Q. Li, J.-K. Wu, N.-X. Wang, J. Li, Q.-F. An, J. Membr. Sci. 2018, 548, 215.
- 46Z. Si, C. Liu, T. Xue, S. Yang, Y. Cui, Y. Wang, D. Cai, P. Qin, J. Mater. Chem. A 2022, 10, 17699.
- 47G. M. Shi, H. Chen, Y. C. Jean, T. S. Chung, Polymer 2013, 54, 774.
- 48H. Wu, X. Zhang, D. Xu, B. Li, Z. Jiang, J. Membr. Sci. 2009, 337, 61.
- 49G. Liu, W.-S. Hung, J. Shen, Q. Li, Y.-H. Huang, W. Jin, K.-R. Lee, J.-Y. Lai, J. Mater. Chem. A 2015, 3, 4510.
- 50K. Cao, Z. Jiang, X. Zhang, Y. Zhang, J. Zhao, R. Xing, S. Yang, C. Gao, F. Pan, J. Membr. Sci. 2015, 490, 72.
- 51C. Pei, H. Mao, Y.-J. Wang, W.-M. Liu, Z.-Z. Li, W.-W. Xie, Y. Li, Z.-P. Zhao, Sep. Purif. Technol. 2023, 318, 124025.
- 52D. Cai, Z. Dong, Y. Wang, C. Chen, P. Li, P. Qin, Z. Wang, T. Tan, Bioresour. Technol. 2016, 211, 677.
- 53S. Xu, H. Zhang, F. Yu, X. Zhao, Y. Wang, Sep. Purif. Technol. 2018, 206, 80.
- 54J. Li, Y. Pan, W. Ji, H. Zhu, G. Liu, G. Zhang, W. Jin, J. Membr. Sci. 2022, 647, 120336.
- 55X. Han, X. Zhang, X. Ma, J. Li, Polym. Compos. 2014, 37, 1282.
10.1002/pc.23294 Google Scholar
- 56X. Chen, Y. Mu, C. Jin, Y. Wei, J. Hao, H. Wang, J. Caro, A. Huang, Angew. Chem., Int. Ed. 2024, 63, e202401747.
- 57Y. Zhuang, W. Chen, Z. Si, S. Pang, H. Wu, S. Liu, J. Baeyens, P. Qin, Sep. Purif. Technol. 2024, 329, 125138.
- 58S. Hu, Y. Guan, D. Cai, S. Li, P. Qin, M. N. Karim, T. Tan, Sci. Rep. 2015, 5, 9428.
- 59C. Zhu, L. Chen, C. Xue, F. Bai, Biotechnol. Biofuels 2018, 11, 128.