Aqueous Supramolecular Transformations of Motor Bola-Amphiphiles at Multiple Length-Scale
Jiahui Meng
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077 China
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorLeong-Hung Cheung
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077 China
Search for more papers by this authorYikun Ren
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077 China
Search for more papers by this authorMarc C. A. Stuart
Centre for System Chemistry, Stratingh Institute for Chemistry and Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, AG Groningen, 9747 Netherlands
Search for more papers by this authorQian Wang
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077 China
Search for more papers by this authorCorresponding Author
Shaoyu Chen
School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jiawen Chen
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper, South China Normal University, Guangzhou, 510006 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Franco King-Chi Leung
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077 China
Centre for Eye and Vision Research, 17 W Hong Kong Science Park, Hong Kong, 999077 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorJiahui Meng
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077 China
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper, South China Normal University, Guangzhou, 510006 China
Search for more papers by this authorLeong-Hung Cheung
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077 China
Search for more papers by this authorYikun Ren
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077 China
Search for more papers by this authorMarc C. A. Stuart
Centre for System Chemistry, Stratingh Institute for Chemistry and Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, AG Groningen, 9747 Netherlands
Search for more papers by this authorQian Wang
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077 China
Search for more papers by this authorCorresponding Author
Shaoyu Chen
School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Jiawen Chen
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper, South China Normal University, Guangzhou, 510006 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Franco King-Chi Leung
State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077 China
Centre for Eye and Vision Research, 17 W Hong Kong Science Park, Hong Kong, 999077 China
E-mail: [email protected], [email protected], [email protected]
Search for more papers by this authorAbstract
Molecular motor amphiphiles have already been widely attempted for dynamic nanosystems across multiple length-scale for developments of small functional materials, including controlling macroscopic foam properties, amplifying motion as artificial molecular muscles, and serving as extracellular matrix mimicking cell scaffolds. However, limiting examples of bola-type molecular motor amphiphiles are considered for constructing macroscopic biomaterials. Herein, this work presents the designed two second generation molecular motor amphiphiles, motor bola-amphiphiles (MBAs). Aside from the photoinduced motor rotation of MBAs achieved in both organic and aqueous media, the rate of recovering thermal helix inversion step can be controlled by the rotor part with different steric hindrances. Dynamic assembled structures of MBAs are observed under (cryo)-transmission electron microscopy (TEM). This dynamicity assists MBAs in further assembling as macroscopic soft scaffolds by applying a shear-flow method. Upon photoirradiation, the phototropic bending function of MBA scaffolds is observed, demonstrating the amplification of molecular motion into macroscopic phototropic bending functions at the macroscopic length-scale. Since MBAs are confirmed with low cytotoxicity, human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can grow on the surface of MBA scaffolds. These results clearly demonstrate the concept of designing MBAs for developing photoresponsive dynamic functional materials to create new-generation soft robotic systems and cell-material interfaces.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
marc202400261-sup-0001-SuppMat.pdf10.9 MB | Supporting Information |
marc202400261-sup-0002-MovieS1.mp49.4 MB | Supplemental Movie 1 |
marc202400261-sup-0003-MovieS2.mp49.5 MB | Supplemental Movie 2 |
marc202400261-sup-0004-MovieS3.mp49.6 MB | Supplemental Movie 3 |
marc202400261-sup-0005-MovieS4.mp49.6 MB | Supplemental Movie 4 |
marc202400261-sup-0006-MovieS5.mp49.5 MB | Supplemental Movie 5 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. D. Pollard, G. G. Borisy, Cell 2003, 112, 453.
- 2B. E. Schultz, S. I. Chan, Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 23.
- 3M. Nedeljković, D. E. Sastre, E. J. Sundberg, Int. J. Mol. Sci. 2021, 22, 7521.
- 4K. Kinbara, T. Aida, Chem. Rev. 2005, 105, 1377.
- 5J. F. Stoddart, Angew. Chem. Int. Ed. 2017, 56, 11094.
- 6J.-P. Sauvage, Angew. Chem. Int. Ed. 2017, 56, 11080.
- 7B. L. Feringa, Angew. Chem. Int. Ed. 2017, 56, 11060.
- 8S. Erbas-Cakmak, D. A. Leigh, C. T. McTernan, A. L. Nussbaumer, Chem. Rev. 2015, 115, 10081.
- 9I. Aprahamian, ACS Cent. Sci. 2020, 6, 347.
- 10E. Moulin, L. Faour, C. C. Carmona-Vargas, N. Giuseppone, Adv. Mater. 2020, 32, 1906036.
- 11L. Wang, Q. Li, Chem. Soc. Rev. 2018, 47, 1044.
- 12A. K.-H. Chau, F. K.-C. Leung, Adv. Colloid Interface Sci. 2023, 315, 102892.
- 13E. Krieg, M. M. C. Bastings, P. Besenius, B. Rybtchinski, Chem. Rev. 2016, 116, 2414.
- 14S. Chen, R. Costil, F. K.-C. Leung, B. L. Feringa, Angew. Chem. Int. Ed. 2021, 60, 11604.
- 15J.-F. Lutz, J.-M. Lehn, E. W. Meijer, K. Matyjaszewski, Nat. Rev. Mater. 2016, 1, 16024.
- 16T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813.
- 17A. S. Lubbe, T. van Leeuwen, S. J. Wezenberg, B. L. Feringa, Tetrahedron 2017, 73, 4837.
- 18T. Allam, D. E. Balderston, M. K. Chahal, K. L. F. Hilton, C. K. Hind, O. B. Keers, R. J. Lilley, C. Manwani, A. Overton, P. I. A. Popoola, L. R. Thompson, L. J. White, J. R. Hiscock, Chem. Soc. Rev. 2023, 52, 6892.
- 19J. Volarić, W. Szymanski, N. A. Simeth, B. L. Feringa, Chem. Soc. Rev. 2021, 50, 12377.
- 20M.-H. Chau, M. C. A. Stuart, F. K.-C. Leung, Colloids Surf., A 2023, 661, 130939.
- 21L.-H. Cheung, B. B. Liu, F. K.-C. Leung, Polym. J. 2023, 55, 1189.
- 22A. K.-H. Chau, L.-H. Cheung, F. K.-C. Leung, Dyes Pigm. 2023, 208, 110807.
- 23L.-H. Cheung, T. Kajitani, F. K.-C. Leung, J. Colloid Interface Sci. 2022, 628, 984.
- 24K. S.-Y. Kwan, Y.-Y. Lui, T. Kajitani, F. K.-C. Leung, Macromol. Rapid Commun. 2022, 43, 2200438.
- 25L.-H. Cheung, J. C. To, W.-K. Wong, M. C. A. Stuart, T. Kajitani, V. W. Keng, F. K.-C. Leung, ACS Appl. Mater. Interfaces 2024, 16, 4056.
- 26Q. Zhang, D.-H. Qu, H. Tian, B. L. Feringa, Matter 2020, 3, 355.
- 27A. Goulet-Hanssens, F. Eisenreich, S. Hecht, Adv. Mater. 2020, 32, 1905966.
- 28Q. Zhang, D.-H. Qu, H. Tian, Adv. Opt. Mater. 2019, 7, 1900033.
- 29Z.-Z. Nie, M. Wang, H. Yang, Commun. Chem. 2024, 7, 58.
- 30J. Chen, F. K.-C. Leung, M. C. A. Stuart, T. Kajitani, T. Fukushima, E. van der Giessen, B. L. Feringa, Nat. Chem. 2018, 10, 132.
- 31F. K.-C. Leung, T. van den Enk, T. Kajitani, J. Chen, M. C. A. Stuart, J. Kuipers, T. Fukushima, B. L. Feringa, J. Am. Chem. Soc. 2018, 140, 17724.
- 32F. K.-C. Leung, T. Kajitani, M. C. A. Stuart, T. Fukushima, B. L. Feringa, Angew. Chem. Int. Ed. 2019, 58, 10985.
- 33S. Chen, L. Yang, F. K.-C. Leung, T. Kajitani, M. C. A. Stuart, T. Fukushima, P. van Rijn, B. L. Feringa, J. Am. Chem. Soc. 2022, 144, 3543.
- 34D. J. van Dijken, J. Chen, M. C. A. Stuart, L. Hou, B. L. Feringa, J. Am. Chem. Soc. 2016, 138, 660.
- 35F. Xu, L. Pfeifer, M. C. A. Stuart, F. K.-C. Leung, B. L. Feringa, Chem. Commun. 2020, 56, 7451.
- 36N. Koumura, E. M. Geertsema, M. B. van Gelder, A. Meetsma, B. L. Feringa, J. Am. Chem. Soc. 2002, 124, 5037.
- 37S. Chen, B. Song, Z. Wang, X. Zhang, J. Phys. Chem. C 2008, 112, 3308.
- 38J. Sun, L. Yu, L. Wang, C. Li, Z. Yang, W. He, C. Zhang, L. Zhang, J. Xiao, X. Yuan, F. Li, H. Yang, J. Mater. Chem. C 2017, 5, 3678.
- 39W. Kaminsky, O. Rabe, A.-M. Schauwienold, G. U. Schupfner, J. Hanss, J. Kopf, J. Organomet. Chem. 1995, 497, 181.
- 40M. P. O'Hagan, S. Haldar, M. Duchi, T. A. A. Oliver, A. J. Mulholland, J. C. Morales, M. C. Galan, Angew. Chem. Int. Ed. 2019, 58, 4334.
- 41L. E. Franken, E. J. Boekema, M. C. A. Stuart, Adv. Sci. 2017, 4, 1600476.
- 42L. E. Franken, K. Grünewald, E. J. Boekema, M. C. A. Stuart, Small 2020, 16, 1906198.
- 43A. C. Coleman, J. M. Beierle, M. C. A. Stuart, B. Maciá, G. Caroli, J. T. Mika, D. J. van Dijken, J. Chen, W. R. Browne, B. L. Feringa, Nat. Nanotechnol. 2011, 6, 547.
- 44A. Guinart, M. Korpidou, D. Doellerer, G. Pacella, M. C. A. Stuart, I. A. Dinu, G. Portale, C. Palivan, B. L. Feringa, Proc. Natl. Acad. Sci. USA 2023, 120, e2301279120.
- 45S. Zhang, M. A. Greenfield, A. Mata, L. C. Palmer, R. Bitton, J. R. Mantei, C. Aparicio, M. Olvera de la Cruz, S. I. Stupp, Nat. Mater. 2010, 9, 594.
- 46K. Kumar, C. Knie, D. Bléger, M. A. Peletier, H. Friedrich, S. Hecht, D. J. Broer, M. G. Debije, A. P. H. J. Schenning, Nat. Commun. 2016, 7, 11975.
- 47A. Ryabchun, Q. Li, F. Lancia, I. Aprahamian, N. Katsonis, J. Am. Chem. Soc. 2019, 141, 1196.
- 48A. Perrot, W. Wang, E. Buhler, E. Moulin, N. Giuseppone, Angew. Chem. Int. Ed. 2023, 62, e202300263.
- 49G. J. Smets, Molecular Models of Photoresponsivenesss, Springer US, Boston, MA 1983, pp. 281–289.
10.1007/978-1-4757-0896-7_18 Google Scholar
- 50S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi, T. Kanamori, Sens. Actuators A-Phys. 2007, 140, 176.
- 51F. Benito-Lopez, R. Byrne, A. M. Răduţă, N. E. Vrana, G. McGuinness, D. Diamond, Lab Chip 2010, 10, 195.
- 52M. Czugala, C. O'Connell, C. Blin, P. Fischer, K. J. Fraser, F. Benito-Lopez, D. Diamond, Sens. Actuators B-Chem. 2014, 194, 105.
- 53W. Ji, Z. Álvarez, A. N. Edelbrock, K. Sato, S. I. Stupp, ACS Appl. Mater. Interfaces 2018, 10, 41046.
- 54Y. Ren, S. Ma, D. Zhang, S. Guo, R. Chang, Y. He, M. Yao, F. Guan, Int. J. Biol. Macromol. 2022, 210, 218.
- 55C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides, D. E. Ingber, Science 1997, 276, 1425.
- 56A. Saraste, K. Pulkki, Cardiovasc. Res. 2000, 45, 528.
- 57Q. Zhou, O. Castañeda Ocampo, C. F. Guimarães, P. T. Kühn, T. G. van Kooten, P. van Rijn, ACS Appl. Mater. Interfaces 2017, 9, 31433.
- 58Q. Zhou, Z. Zhao, Z. Zhou, G. Zhang, R. C. Chiechi, P. van Rijn, Adv. Mater. Interfaces 2018, 5, 1800334.
- 59Q. Zhou, L. Ge, C. F. Guimarães, P. T. Kühn, L. Yang, P. van Rijn, Adv. Mater. Interfaces 2018, 5, 1800504.