Embedding Thiols into Choline Phosphate Polymer Zwitterions
Deborah Snyder
Polymer Science & Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, MA, 01003 USA
Search for more papers by this authorCorresponding Author
Todd Emrick
Polymer Science & Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, MA, 01003 USA
E-mail: [email protected]
Search for more papers by this authorDeborah Snyder
Polymer Science & Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, MA, 01003 USA
Search for more papers by this authorCorresponding Author
Todd Emrick
Polymer Science & Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, MA, 01003 USA
E-mail: [email protected]
Search for more papers by this authorAbstract
The compositional scope of polymer zwitterions has grown significantly in recent years and now offers designer synthetic materials that are broadly applicable across numerous areas, including supracolloidal structures, electronic materials interfaces, and macromolecular therapeutics. Among recent developments in polymer zwitterion syntheses are those that allow insertion of reactive functionality directly into the zwitterionic moiety, yielding new monomer and polymer structures that hold potential for maximizing the impact of zwitterions on the macromolecular materials chemistry field. This manuscript describes the preparation of zwitterionic choline phosphate (CP) methacrylates containing either aromatic or aliphatic thiols embedded directly into the zwitterionic moiety. The polymerization of these functional CP methacrylates by reversible addition-fragmentation chain-transfer methodology yields polymeric zwitterionic thiols containing protected thiol functionality in the zwitterionic units. After polymerization, the protected thiols are liberated to yield thiol-rich polymer zwitterions which serve as precursors to subsequent reactions that produce polymer networks as well as polymer-protein bioconjugates.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
Filename | Description |
---|---|
marc202300690-sup-0001-SuppMat.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. Ishihara, T. Ueda, N. Nakabayashi, Polym. J. 1990, 22, 355.
- 2D. Li, Q. Wei, C. Wu, X. Zhang, Q. Xue, T. Zheng, M. Cao, Adv. Colloid Interface Sci. 2020, 278, 102141.
- 3Q. Jin, Y. Chen, Y. Wang, J. Ji, Colloids Surf., B 2014, 124, 80.
- 4M. U. Brown, A. Triozzi, T. Emrick, J. Am. Chem. Soc. 2021, 143, 6528.
- 5K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, N. Nakabayashi, J. Biomed. Mater. Res. 1998, 39, 323.
10.1002/(SICI)1097-4636(199802)39:2<323::AID-JBM21>3.0.CO;2-C CAS PubMed Web of Science® Google Scholar
- 6L. Mi, S. Jiang, Angew. Chem., Int. Ed. 2014, 53, 1746.
- 7Y. Iwasaki, K. Ishihara, Anal. Bioanal. Chem. 2005, 381, 534.
- 8G. Hu, S. S. Parelkar, T. Emrick, Polym. Chem. 2015, 6, 525.
- 9G. Hu, T. Emrick, J. Am. Chem. Soc. 2016, 138, 1828.
- 10C. F. Santa Chalarca, T. Emrick, J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 83.
- 11L. Zhou, A. Triozzi, M. Figueiredo, T. Emrick, ACS Macro Lett. 2021, 10, 1204.
- 12M. U. Brown, H.-G. Seong, K. O. Margossian, L. Bishop, T. P. Russell, M. Muthukumar, T. Emrick, Macromol. Rapid Commun. 2022, 43, 2100678.
- 13C.-C. Chang, R. Letteri, R. C. Hayward, T. Emrick, Macromolecules 2015, 48, 7843.
- 14T.-M. Chen, Y.-F. Wang, Y.-J Li, T. Nakaya, I. Sakurai, J. Appl. Polym. Sci. 1996, 60, 455.
10.1002/(SICI)1097-4628(19960418)60:3<455::AID-APP20>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 15H. N. Nguyen, T. L. H. Ngo, Y. Iwasaki, C.-J. Huang, Adv. Mater. Interfaces 2022, 9, 2201002.
- 16H. Nakano, Y. Noguchi, S. Kakinoki, M. ;. Yamakawa, I. Osaka, Y. Iwasaki, ACS Appl. Bio Mater. 2020, 3, 1071.
- 17R. A. Letteri, C. F. Santa Chalarca, Y. Bai, R. C. Hayward, T. Emrick, Adv. Mater. 2017, 29, 17002921.
10.1002/adma.201702921 Google Scholar
- 18J. Zhao, C. F. Santa Chalarca, J. K. Nunes, H. A. Stone, T. Emrick, Macromol. Rapid Commun. 2020, 41, 2000334.
- 19Z. Yang, J. Zhao, T. Emrick, ACS Appl. Mater. Interfaces 2021, 13, 21898.
- 20M. Skinner, B. M. Johnston, Y. Liu, B. Hammer, R. Selhorst, I. Xenidou, S. L. Perry, T. Emrick, Biomacromolecules 2018, 19, 3377.
- 21J. Zhao, Z. Pan, D. Snyder, H. A. Stone, T. Emrick, J. Am. Chem. Soc. 2021, 143, 5558.
- 22K. P. Sonu, L. Zhou, S. Biswas, J. Klier, A. C. Balazs, T. Emrick, S. R. Peyton, Langmuir 2023, 39, 2659.
- 23C. F. Santa Chalarca, R. A. Letteri, A. Perazzo, H. A. Stone, T. Emrick, Adv. Funct. Mater. 2018, 28, 1804325.
- 24S. Shiomoto, K. Inoue, H. Higuchi, S.-N. Nishimura, H. Takaba, M. Tanaka, M. Kobayashi, Biomacromolecules 2022, 23, 2999.
- 25M. Mukai, D. Ihara, C.-W. Chu, C.-H. Cheng, s, Biomacromolecules 2020, 21, 2125.
- 26A. Kolate, D. Baradia, S. Patil, I. Vhora, G. Kore, A. Misra, J. Controlled Release 2014, 192, 67.
- 27S. N. S. Alconcel, A. A. Baas, H. D. Maynard, Polym. Chem. 2011, 2, 1442.
- 28P. Chakma, D. Konkolewicz, Angew. Chem., Int. Ed. 2019, 58, 9682.
- 29H. Mutlu, E. B. Ceper, X. Li, J. Yang, W. Dong, M. M. Ozmen, P. Theato, Macromol. Rapid. Commun. 2019, 40, 1800650.
- 30Q. Zhang, D.-H. Qu, B. L. Feringa, H. Tian, J. Am. Chem. Soc. 2022, 144, 2022.
- 31J. Canadell, H. Goossens, B. Klumperman, Macromolecules 2011, 44, 2536.
- 32H. Xiang, J. Yin, G. Lin, X. Liu, M. Rong, M. P-C Zhang, Chem. Eng. J. 2019, 358, 878.
- 33C. J. Kloxin, C. N. Bowman, Chem. Soc. Rev. 2013, 42, 7161.
- 34J. A. Yoon, J. Kamada, K. Koynov, J. Mohin, R. Nicolaÿ, Y. Zhang, A. C. Balazs, T. Kowalewski, K. Matyjaszewski, Macromolecules 2012, 45, 142.
- 35H. Otsuka, S. Nagano, Y. Kobashi, T. Maeda, A. Takahara, Chem. Commun. 2010, 7, 1150.
10.1039/B916128G Google Scholar
- 36I. Azcune, I. Odriozola, Eur. Polym. J. 2016, 84, 147.
- 37B. T. Michal, C. A. Jaye, E. J. Spencer, S. J. Rowan, ACS Macro Lett. 2013, 2, 694.
- 38I. Altinbasak, M. Arslan, R. Sanyal, A. Sanyal, Polym. Chem. 2020, 11, 7603.
- 39R. J. Wojtecki, G. O. Jones, A. Y. Yuen, W. Chin, D. J. Boday, A. Nelson, J. M. García, Y. Y. Yang, J. L. Hedrick, J. Am. Chem. Soc. 2015, 137, 14248.
- 40M. Le Neindre, R. Nicolaÿ, Polym. Chem. 2014, 5, 4601.
- 41T. Fuoco, A. Finne-Wistrand, D. Pappalardo, Biomacromolecules 2016, 17, 1383.
- 42X. Chen, J. Lawrence, S. Parelkar, T. Emrick, Macromolecules 2013, 46, 119.
- 43M. Le Neindre, R. Nicolaÿ, Polym. Int. 2013, 63, 887.
- 44S. Summonte, G. F. Racaniello, A. Lopedota, N. Denora, A. Bernkop-Schnürch, J. Controlled Release 2021, 330, 470.
- 45J. Li, J. J. Richardson, H. Ejima, J. Am. Chem. Soc. 2022, 144, 2450.
- 46N. Kihara, C. Kanno, T. Fukutomi, J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 1443.
- 47A. Rekondo, R. Martin, A. Ruiz De Luzuriaga, G. Cabañero, H. J. Grande, I. Odriozola, Mater. Horiz. 2014, 1, 237.
- 48R. Martin, A. Rekondo, A. R. de Luzuriaga, A. Santamaria, I. Odriozola, RCS Adv. 2015, 5, 17514.
- 49P. M. Kharkar, A. M. Kloxin, K. L. Kiick, J. Mater. Chem. B 2014, 2, 5511.
- 50Y. Liang, K. L. Kiick, Biomacromolecules 2016, 17, 601.
- 51S. Hayama, M. Takeishi, K. Takahashi, S. Niino, Makromol. Chem. 1980, 181, 1889.
- 52Y. Yin, J. Lee, N. Kim, J. Lee, S. Lim, E. Kim, J. Park, M. Lee, J. Jeong, Polymers 2018, 10, 953.
- 53H. P. Gregor, D. Dolar, G. K. Hoeschele, J. Am. Chem. Soc. 1955, 77, 3675.
- 54C. G. Overberger, A. Lebovits, J. Am. Chem. Soc. 1955, 77, 3675.
- 55C. G. Overberger, A. Lebovits, J. Am. Chem. Soc. 1956, 78, 4792.
- 56K. Fila, B. Podkoscielna, M. Podgórski, Materials 2020, 13, 3021.
- 57Z. Deng, S. Yuan, R. X. Xu, H. Liang, S. Liu, Angew. Chem., Int. Ed. 2018, 57, 8896.
- 58M. E. Bracchi, G. Dura, D. A. Fulton, Polym. Chem. 2019, 10, 1258.
- 59B. T. Tuten, D. Chao, C. K. Lyon, E. B. Berda, Polym. Chem. 2012, 3, 3068.
- 60N. Shahkaramipour, C. K. Lai, S. R. Venna, H. Sun, C. Cheng, H. Lin, Ind. Eng. Chem. Res. 2018, 57, 2336.
- 61H. Macková, Z. Plichta, H. Hlídková, O. Sedláček, R. Konefal, Z. Sadakbayeva, M. Dušková-Smrčková, D. Horák, S. Kubinová, ACS Appl. Mater. Interfaces 2017, 9, 10544.
- 62P. Khunsuk, S. Chawalitpong, P. Sawutdeechaikul, T. Palaga, V. P. Hoven, Mol. Pharmaceutics 2018, 15, 164.
- 63H. Macková, H. Hlídková, Z. Kaberova, V. Proks, J. Kucka, V. Patsula, M. Vetrik, O. Janousková, B. Podhorská, O. Pop-Georgievski, S. R. Kubinová, D. Horák, Mater. Sci. Eng., C 2021, 131, 112500.
- 64J.-Y. Li, L. Qiu, X.-F. Xu, C.-Y. Pan, C.-Y. Hong, W.-J. Zhang, J. Mater. Chem. B 2018, 6, 1678.
- 65W. Lin, G. Ma, N. Kampf, Z. Yuan, S. Chen, Biomacromolecules 2016, 17, 2010.
- 66Z. Yang, D. Snyder, A. Sathyan, A. C. Balazs, T. Emrick, Adv. Funct. Mater. 2023, 2306819, 31.
- 67D. Bontempo, K. L. Heredi, B. A. Fish, H. D. Maynard, J. Am. Chem. Soc. 2004, 126, 15372.
- 68J. Liu, H. Liu, V. Bulmus, L. Tao, C. Boyer, T. P. Davis, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 1399.
- 69S. A. Isarov, P. W. Lee, J. K. Pokorski, Biomacromolecules 2016, 17, 641.
- 70G. N. Grover, S. N. S. Alconcel, N. M. Matsumoto, H. D. Maynard, Macromolecules 2009, 42, 7657.
- 71J. Morales-Sanfrutos, J. Lopez-Jaramillo, M. Ortega-Muñoz, A. Megia-Fernandez, F. Perez-Balderas, F. Hernandez-Mateo, F. Santoyo-Gonzalez, Org. Biomol. Chem. 2010, 8, 667.
- 72M. Li, F. Cheng, H. Li, W. Jin, C. Chen, W. He, G. Cheng, Q. Wang, Langmuir 2019, 35, 16466.