Effect of Bulky Atom Substitution on Backbone Coplanarity and Electrical Properties of Cyclopentadithiophene-Based Semiconducting Polymers
Sohee Park
Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760 Republic of Korea
Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760 Republic of Korea
Search for more papers by this authorYejin Kim
Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760 Republic of Korea
Search for more papers by this authorChangwon Choi
Department of Energy Science and Engineering, DGIST, Daegu, 42988 Republic of Korea
Search for more papers by this authorHyungju Ahn
Pohang Accelerator Laboratory, POESTECH, Pohang, 37673 Republic of Korea
Search for more papers by this authorTaemin Park
Department of Chemistry, Daegu University, Gyeongsan, 38453 Republic of Korea
Search for more papers by this authorSeoung Ho Lee
Department of Chemistry, Daegu University, Gyeongsan, 38453 Republic of Korea
Search for more papers by this authorYun Hee Jang
Department of Energy Science and Engineering, DGIST, Daegu, 42988 Republic of Korea
Search for more papers by this authorCorresponding Author
Byoung Hoon Lee
Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760 Republic of Korea
Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorSohee Park
Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760 Republic of Korea
Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760 Republic of Korea
Search for more papers by this authorYejin Kim
Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760 Republic of Korea
Search for more papers by this authorChangwon Choi
Department of Energy Science and Engineering, DGIST, Daegu, 42988 Republic of Korea
Search for more papers by this authorHyungju Ahn
Pohang Accelerator Laboratory, POESTECH, Pohang, 37673 Republic of Korea
Search for more papers by this authorTaemin Park
Department of Chemistry, Daegu University, Gyeongsan, 38453 Republic of Korea
Search for more papers by this authorSeoung Ho Lee
Department of Chemistry, Daegu University, Gyeongsan, 38453 Republic of Korea
Search for more papers by this authorYun Hee Jang
Department of Energy Science and Engineering, DGIST, Daegu, 42988 Republic of Korea
Search for more papers by this authorCorresponding Author
Byoung Hoon Lee
Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760 Republic of Korea
Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760 Republic of Korea
E-mail: [email protected]
Search for more papers by this authorAbstract
The effect of atomic substitution on the optoelectronic properties of a coplanar donor–acceptor (D–A) semiconducting polymer (SPs), prepared using cyclopentadithiophene (CDT) and 2,1,3-benzothiadiazole (BT) moieties, is investigated. By substituting a carbon atom in the BT unit with CF or C–Cl, two random D–A SPs are prepared, and their optoelectronic properties are thoroughly investigated. Density functional theory calculations demonstrate that the fluorinated polymer has a slightly smaller dihedral angle (ϴ = 0.6°) than the pristine polymer (ϴ = 1.9°) in its lowest-energy conformation, implying efficient charge transport through the coplanar backbone of the fluorinated polymer. However, the chlorinated polymer shows the lowest energy at a relatively larger dihedral angle (ϴ = 139°) due to the steric hindrance induced by bulky chlorine atoms in the backbone, thereby leading to thin-film morphology, which is unfavorable for charge transport. Consequently, the fluorinated polymer yields the highest field-effect mobility (μ) of 0.57 cm2 V−1 s−1, slightly higher than that of the pristine polymer (μ = 0.33 cm2 V−1 s−1), and the extended device lifetime of organic field-effect transistors over 12 d without any encapsulation layers. The results of this study provide design guidelines for air-stable D–A SPs.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
Supporting Information
Filename | Description |
---|---|
marc202100709-sup-0001-SuppMat.pdf820.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Dong, X. Fu, J. Liu, Z. Wang, W. Hu, Adv. Mater. 2013, 25, 6158.
- 2J. Mei, Y. Diao, A. L. Appleton, L. Fang, Z. Bao, J. Am. Chem. Soc. 2013, 135, 6724.
- 3L. BiniekB. C. SchroederC. B. Nielsen, I. Mcculloch, J. Mater. Chem. 2012, 22, 14803.
- 4G. Sonmez, H. Meng, Q. Zhang, F. Wudl, Adv. Funct. Mater. 2003, 13, 726.
- 5L. Luo, W. Huang, C. Yang, Z. Zhang, Q. Zhang, Front. Phys. 2021, 16, 33500.
- 6Q. Zhang, Front. Phys. 2021, 16, 13602.
- 7Q. Zhao, J. Qu, F. He, Adv. Sci. 2020, 7, 2000509.
- 8H. Sirringhaus, Adv. Mater. 2014, 26, 1319.
- 9M. Kim, S. U. Ryu, S. A. Park, K. Choi, T. Kim, D. Chung, T. Park, Adv. Funct. Mater. 2020, 30, 1904545.
- 10M. Zhang, H. N. Tsao, W. Pisula, C. Yang, A. K. Mishra, K. Müllen, J. Am. Chem. Soc. 2007, 129, 3472.
- 11C. Luo, A. K. K. Kyaw, L. A. Perez, S. Patel, M. Wang, B. Grimm, G. C. Bazan, E. J. Kramer, A. J. Heeger, Nano Lett. 2014, 14, 2764.
- 12Y. Yamashita, J. Tsurumi, F. Hinkel, Y. Okada, J. Soeda, W. Zajączkowski, M. Baumgarten, W. Pisula, H. Matsui, K. Müllen, J. Takeya, Adv. Mater. 2014, 26, 8169.
- 13B. H. Lee, B. B. Y. Hsu, S. N. Patel, J. Labram, C. Luo, G. C. Bazan, A. J. Heeger, Nano Lett. 2016, 16, 314.
- 14T. Lei, J.-H. Dou, Z.-J. Ma, C.-J. Liu, J.-Y. Wang, J. Pei, Chem. Sci. 2013, 4, 2447.
- 15J. H. Oh, S.-L. Suraru, W.-Y. Lee, M. Könemann, H. W. Höffken, C. Röger, R. Schmidt, Y. Chung, W.-C. Chen, F. Würthner, Z. Bao, Adv. Funct. Mater. 2010, 20, 2148.
- 16B. Nketia-Yawson, H.-S. Lee, D. Seo, Y. Yoon, W.-T. Park, K. Kwak, H. J. Son, B. Kim, Y.-Y. Noh, Adv. Mater. 2015, 27, 3045.
- 17Y. Cho, H. R. Lee, A. Jeong, J. Lee, S. M. Lee, S. H. Joo, S. K. Kwak, J. H. Oh, C. Yang, ACS Appl. Mater. Interfaces 2019, 11, 40347.
- 18L. Ying, B. B. Y. Hsu, H. Zhan, G. C. Welch, P. Zalar, L. A. Perez, E. J. Kramer, T.-Q. Nguyen, A. J. Heeger, W.-Y. Wong, G. C. Bazan, J. Am. Chem. Soc. 2011, 133, 18538.
- 19L. Ying, F. Huang, G. C. Bazan, Nat. Commun. 2017, 8, 14047.
- 20B. H. Lee, G. C. Bazan, A. J. Heeger, Adv. Mater. 2016, 28, 57.
- 21M. Wang, M. Ford, H. Phan, J. Coughlin, T.-Q. Nguyen, G. C. Bazan, Chem. Commun. 2016, 52, 3207.
- 22J. Lee, S.-H. Kang, S. M. Lee, K. C. Lee, H. Yang, Y. Cho, D. Han, Y. Li, B. H. Lee, C. Yang, Angew. Chem. Int. Ed. 2018, 57, 13629.
- 23N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, M. Leclerc, J. Am. Chem. Soc. 2008, 130, 732.
- 24H. Zhang, H. Yao, J. Hou, J. Zhu, J. Zhang, W. Li, R. Yu, B. Gao, S. Zhang, J. Hou, Adv. Mater. 2018, 30, 1800613.
- 25B. Qiu, S. Chen, H. Li, Z. Luo, J. Yao, C. Sun, X. Li, L. Xue, Z.-G. Zhang, C. Yang, Y. Li, Chem. Mater. 2019, 31, 6558.
- 26M. L. Tang, J. H. Oh, A. D. Reichardt, Z. Bao, J. Am. Chem. Soc. 2009, 131, 3733.
- 27M. Gsänger, J. H. Oh, M. Könemann, H. . W. Höffken, A.-M. Krause, Z. Bao, F. Würthner, Angew. Chem. Int. Ed. 2010, 49, 740.
- 28H.-I. Je, E.-Y. Shin, K. J. Lee, H. Ahn, S. Park, S. H. Im, Y.-H. Kim, H. J. Son, S.-K. Kwon, ACS Appl. Mater. Interfaces 2020, 12, 23181.
- 29S.-H. Kang, G. D. Tabi, J. Lee, G. Kim, Y.-Y. Noh, C. Yang, Macromolecules 2017, 50, 4649.
- 30Y. Zhang, S.-C. Chien, K.-S. Chen, H.-L. Yip, Y. Sun, J. A. Davies, F.-C. Chen, A. K.-Y. Jen, Chem. Commun. 2011, 47, 11026.
- 31Z. Hu, H. Chen, J. Qu, X. Zhong, P. Chao, M. Xie, W. Lu, A. Liu, L. Tian, Y.-A. Su, W. Chen, F. He, ACS Energy Lett. 2017, 2, 753.
- 32D. Mo, Z. Chen, L. Han, H. Lai, P. Chao, Q. Zhang, L. Tian, F. He, New J. Chem. 2019, 43, 2540.
- 33Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Mühlbacher, M. Scharber, C. Brabec, Macromolecules 2007, 40, 1981.
- 34D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller, R. Gaudiana, C. Brabec, Adv. Mater. 2006, 18, 2884.
- 35Y. Zhang, J. Zou, C.-C. Cheuh, H.-L. Yip, A. K.-Y. Jen, Macromolecules 2012, 45, 5427.
- 36H.-R. Tseng, H. Phan, C. Luo, M. Wang, L. A. Perez, S. N. Patel, L. Ying, E. J. Kramer, T.-Q. Nguyen, G. C. Bazan, A. J. Heeger, Adv. Mater. 2014, 26, 2993.
- 37A. J. Heeger, N. S. Sariciftci, E. B. Namdas, Semiconducting and Metallic Polymers, OUP, Oxford, 2010.
- 38Y. Du, H. Liu, A. T. Neal, M. Si, P. D. Ye, IEEE Electron Device Lett. 2013, 34, 1328.
- 39C. Liu, Y. Xu, Y.-Y. Noh, Mater. Today 2015, 18, 79.
- 40S. Choi, C. Fuentes-Hernandez, C.-Y. Wang, T. M. Khan, F. A. Larrain, Y. Zhang, S. Barlow, S. R. Marder, B. Kippelen, ACS Appl. Mater. Interfaces 2016, 8, 24744.
- 41G. Horowitz, P. Lang, M. Mottaghi, H. Aubin, Adv. Funct. Mater. 2004, 14, 1069.
- 42H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, T. N. Jackson, Solid State Electron 2003, 47, 297.
- 43K. Seshadri, C. D. Frisbie, Appl. Phys. Lett. 2001, 78, 993.
- 44D. Niedzialek, V. Lemaur, D. Dudenko, J. Shu, M. R. Hansen, J. W. Andreasen, W. Pisula, K. Müllen, J. Cornil, D. Beljonne, Adv. Mater. 2013, 25, 1939.
- 45C. R. Bridges, M. J. Ford, E. M. Thomas, C. Gomez, G. C. Bazan, R. A. Segalman, Macromolecules 2018, 51, 8597.
- 46J. Ku, Y. Lansac, Y. H. Jang, J. Phys. Chem. C 2011, 115, 21508.
- 47J. Ku, Y. Gim, Y. Lansac, Y. H. Jang, Phys. Chem. Chem. Phys. 2016, 18, 1017.
- 48Schrödinger Release, Schrödinger, LLC, New York, NY 2014.
- 49B. H. Greeley, T. V. Russo, D. T. Mainz, R. A. Friesner, J.-M. Langlois, W. A. Goddard, R. E. Donnelly, M. N. Ringnalda, J. Chem. Phys. 1994, 101, 4028.