Amphiphilic Peptoid-Directed Assembly of Oligoanilines into Highly Crystalline Conducting Nanotubes
Zhiliang Li
Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Search for more papers by this authorDuyen K. Tran
Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195-1750 USA
Search for more papers by this authorMary Nguyen
Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195-1750 USA
Search for more papers by this authorTengyue Jian
Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Search for more papers by this authorFeng Yan
Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
School of Chemistry & Chemical Engineering, Linyi University, Linyi, Shandong Province, 276005 China
Search for more papers by this authorCorresponding Author
Samson A. Jenekhe
Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195-1750 USA
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Chun-Long Chen
Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195-1750 USA
E-mail: [email protected], [email protected]
Search for more papers by this authorZhiliang Li
Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Search for more papers by this authorDuyen K. Tran
Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195-1750 USA
Search for more papers by this authorMary Nguyen
Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195-1750 USA
Search for more papers by this authorTengyue Jian
Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Search for more papers by this authorFeng Yan
Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
School of Chemistry & Chemical Engineering, Linyi University, Linyi, Shandong Province, 276005 China
Search for more papers by this authorCorresponding Author
Samson A. Jenekhe
Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195-1750 USA
E-mail: [email protected], [email protected]
Search for more papers by this authorCorresponding Author
Chun-Long Chen
Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352 USA
Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, WA, 98195-1750 USA
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
It is reported herein the synthesis of a novel amphiphilic diblock peptoid bearing a terminal conjugated oligoaniline and its self-assembly into small-diameter (D ≈ 35 nm) crystalline nanotubes with high aspect ratios (>30). It is shown that both tetraaniline (TANI)-peptoid and bianiline (BANI)-peptoid triblock molecules self-assemble in solution to form rugged highly crystalline nanotubes that are very stable to protonic acid doping and de-doping processes. The similarity of the crystalline tubular structure of the nanotube assemblies revealed by electron microscopy imaging, and X-ray diffraction analysis of the nanotube assemblies of TANI-functionalized peptoids and nonfunctionalized peptoids showed that the peptoid is an efficient ordered structure directing motif for conjugated oligomers. Films of doped TANI-peptoid nanotubes has a dc conductivity of ca. 95 mS cm−1, while the thin films of doped un-assembled TANI-peptoids show a factor of 5.6 lower conductivity, demonstrating impact of the favorable crystalline ordering of the assemblies on electrical transport. These results demonstrate that peptoid-directed supramolecular assembly of tethered π-conjugated oligo(aniline) exemplify a novel general strategy for creating rugged ordered and complex nanostructures that have useful electronic and optoelectronic properties.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that supports the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
marc202100639-sup-0001-SuppMat.pdf991.1 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1a) F. S. Kim, G. Ren, S. A. Jenekhe, Chem. Mater. 2011, 23, 682; b) J.-M. Lehn, Makromol. Chem. Macromol. Symp. 1993, 69, 1; c) R. Xu, L. Du, D. Adekoya, G. Zhang, S. Zhang, S. Sun, Y. Lei, Adv. Energy Mater. 2021, 11, 2001537; d) C. Cui, D. H. Park, D. J. Ahn, Adv. Mater. 2020, 32, 2002213; e) T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, D. E. Vogel, S. D. Theiss, Chem. Mater. 2004, 16, 4413.
- 2a) P.-T. Wu, H. Xin, F. S. Kim, G. Ren, S. A. Jenekhe, Macromolecules 2009, 42, 8817; b) G. Ren, E. Ahmed, S. A. Jenekhe, J. Mater. Chem. 2012, 22, 24373.
- 3J. Wu, X. Rui, C. Wang, W.-B. Pei, R. Lau, Q. Yan, Q. Zhang, Adv. Energy Mater. 2015, 5, 1402189.
- 4a) A. L. Briseno, S. C. B. Mannsfeld, P. J. Shamberger, F. S. Ohuchi, Z. Bao, S. A. Jenekhe, Y. Xia, Chem. Mater. 2008, 20, 4712; b) S. G. Hahm, Y. Rho, J. Jung, S. H. Kim, T. Sajoto, F. S. Kim, S. Barlow, C. E. Park, S. A. Jenekhe, S. R. Marder, M. Ree, Adv. Funct. Mater. 2013, 23, 2060; c) A. L. Briseno, S. C. B. Mannsfeld, X. Lu, Y. Xiong, S. A. Jenekhe, Z. Bao, Y. Xia, Nano Lett. 2007, 7, 668; d) A. L. Briseno, S. C. B. Mannsfeld, C. Reese, J. M. Hancock, Y. Xiong, S. A. Jenekhe, Z. Bao, Y. Xia, Nano Lett. 2007, 7, 2847.
- 5a) J. Rivnay, R. M. Owens, G. G. Malliaras, Chem. Mater. 2014, 26, 679; b) D. T. Simon, E. O. Gabrielsson, K. Tybrandt, M. Berggren, Chem. Rev. 2016, 116, 13009; c) B. D. Paulsen, K. Tybrandt, E. Stavrinidou, J. Rivnay, Nat. Mater. 2020, 19, 13.
- 6a) G. Ren, P.-T. Wu, S. A. Jenekhe, ACS Nano 2011, 5, 376; b) H. Xin, O. G. Reid, G. Ren, F. S. Kim, D. S. Ginger, S. A. Jenekhe, ACS Nano 2010, 4, 1861; c) H. Xin, F. S. Kim, S. A. Jenekhe, J. Am. Chem. Soc. 2008, 130, 5424.
- 7E. Ahmed, T. Earmme, G. Ren, S. A. Jenekhe, Chem. Mater. 2010, 22, 5786.
- 8a) Z. Yin, Q. Zheng, Adv. Energy Mater. 2012, 2, 179; b) P. Li, G. Xu, N. Wang, B. Guan, S. Zhu, P. Chen, M. Liu, Adv. Funct. Mater. 2021, 31, 2100367; c) A. L. Briseno, S. C. B. Mannsfeld, E. Formo, Y. Xiong, X. Lu, Z. Bao, S. A. Jenekhe, Y. Xia, J. Mater. Chem. 2008, 18, 5395; d) Q. Zhou, C. M. Li, J. Li, X. Cui, D. Gervasio, J. Phys. Chem. C 2007, 111, 11216.
- 9a) A. Nitti, D. Pasini, Adv. Mater. 2020, 32, 1908021; b) R. Mazzaro, A. Vomiero, Adv. Energy Mater. 2018, 8, 1801903.
- 10a) O. A. Bell, G. Wu, J. S. Haataja, F. Brömmel, N. Fey, A. M. Seddon, R. L. Harniman, R. M. Richardson, O. Ikkala, X. Zhang, C. F. J. Faul, J. Am. Chem. Soc. 2015, 137, 14288; b) W. Lyu, J. Feng, W. Yan, C. F. Faul, J. Mater. Chem. C 2015, 3, 11945.
- 11B. M. Mills, N. Fey, T. Marszalek, W. Pisula, P. Rannou, C. F. J. Faul, Chem. – Eur. J. 2016, 22, 16950.
- 12a) J. Sun, R. N. Zuckermann, ACS Nano 2013, 7, 4715; b) N. Gangloff, J. Ulbricht, T. Lorson, H. Schlaad, R. Luxenhofer, Chem. Rev. 2016, 116, 1753.
- 13a) Y. Song, M. Wang, S. Li, H. Jin, X. Cai, D. Du, H. Li, C.-L. Chen, Y. Lin, Small 2018, 14, 1803544; b) H. B. Jin, F. Jiao, M. D. Daily, Y. L. Chen, F. Yan, Y. H. Ding, X. Zhang, E. J. Robertson, M. D. Baer, C. L. Chen, Nat. Commun. 2016, 7. c) H. Jin, T. Jian, Y.-H. Ding, Y. Chen, P. Mu, L. Wang, C.-L. Chen, Biopolymers 2019, 110, e23258; d) H. Jin, Y.-H. Ding, M. Wang, Y. Song, Z. Liao, C. J. Newcomb, X. Wu, X.-Q. Tang, Z. Li, Y. Lin, F. Yan, T. Jian, P. Mu, C.-L. Chen, Nat. Commun. 2018, 9, 270.
- 14a) A. S. Knight, E. Y. Zhou, M. B. Francis, R. N. Zuckermann, Adv. Mater. 2015, 27, 5665; b) A. S. Culf, Biopolymers 2019, 110, e23285.
- 15a) B. Kang, S. Chung, Y. D. Ahn, J. Lee, J. Seo, Org. Lett. 2013, 15, 1670; b) B. Kang, W. Yang, S. Lee, S. Mukherjee, J. Forstater, H. Kim, B. Goh, T.-Y. Kim, V. A. Voelz, Y. Pang, J. Seo, Sci. Rep. 2017, 7, 4786; c) Y. Kim, B. Kang, H.-Y. Ahn, J. Seo, K. T. Nam, Small 2017, 13, 1700071.
- 16F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, A. P. H. J. Schenning, Chem. Rev. 2005, 105, 1491.
- 17a) T. G. Dane, P. T. Cresswell, O. Bikondoa, G. E. Newby, T. Arnold, C. F. J. Faul, W. H. Briscoe, Soft Matter 2012, 8, 2824; b) W. E. Ford, D. Gao, F. Scholz, G. Nelles, F. Von Wrochem, F. von Wrochem, Chem. Mater. 2013, 25, 3603; c) Y. Wang, H. D. Tran, L. Liao, X. Duan, R. B. Kaner, J. Am. Chem. Soc. 2010, 132, 10365; d) Y. Wang, J. Liu, H. D. Tran, M. Mecklenburg, X. N. Guan, A. Z. Stieg, B. C. Regan, D. C. Martin, R. B. Kaner, J. Am. Chem. Soc. 2012, 134, 9251; e) Z. Shao, Z. Yu, J. Hu, S. Chandrasekaran, D. M. Lindsay, Z. Wei, C. F. J. Faul, J. Mater. Chem. 2012, 22, 16230; f) C. U. Udeh, N. Fey, C. F. J. Faul, J. Mater. Chem. 2011, 21, 18137.
- 18a) K. Lee, S. Cho, S. Heum Park, A. J. Heeger, C.-W. Lee, S.-H. Lee, Nature 2006, 441, 65; b) C.-W. Lin, R. L. Li, S. Robbennolt, M. T. Yeung, G. Akopov, R. B. Kaner, Macromolecules 2017, 50, 5892.
- 19a) C. U. Udeh, P. Rannou, B. P. Brown, J. O. Thomas, C. F. J. Faul, J. Mater. Chem. C 2013, 1, 6428; b) W. Lv, J. Feng, W. Yan, C. F. J. Faul, J. Mater. Chem. B 2014, 2, 4720; c) H. Kim, S.-M. Jeong, J.-W. Park, J. Am. Chem. Soc. 2011, 133, 5206; d) H. Kim, T.-G. Kim, J.-W. Park, Macromol. Res. 2013, 21, 815; e) R. Arukula, C. R. K. Rao, R. Narayan, B. Sreedhar, Polymer 2015, 77, 334.
- 20I. Arioz, O. Erol, G. Bakan, F. B. Dikecoglu, A. E. Topal, M. Urel, A. Dana, A. B. Tekinay, M. O. Guler, ACS Appl. Mater. Interfaces 2018, 10, 308.
- 21X. Liu, Y. Zhou, D. Chao, Macromol. Res. 2020, 28, 721.
- 22T.-C. Huang, L.-C. Yeh, H.-Y. Huang, Z.-Y. Nian, Y.-C. Yeh, Y.-C. Chou, J.-M. Yeh, M.-H. Tsai, Polym. Chem. 2014, 5, 630.
- 23W. Feng, X. D. Bai, Y. Q. Lian, J. Liang, X. G. Wang, K. Yoshino, Carbon 2003, 41, 1551.
- 24F. Cheng, W. Tang, C. Li, J. Chen, H. Liu, P. Shen, S. Dou, Chem. – Eur. J. 2006, 12, 3082.
- 25W. Chen, R. B. Rakhi, H. N. Alshareef, J. Mater. Chem. A 2013, 1, 3315.
- 26a) H. Qiu, M. Wan, B. Matthews, L. Dai, Macromolecules 2001, 34, 675; b) Z. Wei, Z. Zhang, M. Wan, Langmuir 2002, 18, 917; c) Z. Zhang, M. Wan, Y. Wei, Adv. Funct. Mater. 2006, 16, 1100; d) L. Zhang, H. Peng, Z. D. Zujovic, P. A. Kilmartin, J. Travas-Sejdic, Macromol. Chem. Phys. 2007, 208, 1210; e) L. Zhang, H. Peng, J. Sui, P. A. Kilmartin, J. Travas-Sejdic, Curr. Appl. Phys. 2008, 8, 312.
- 27B. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc, R. A. Segalman, Nat. Rev. Mater. 2016, 1, 16050.
- 28a) L. W. Shacklette, J. F. Wolf, S. Gould, R. H. Baughman, J. Chem. Phys. 1988, 88, 3955;
b) J. P. Pouget, M. E. Jozefowicz, A. J. Epstein, X. Tang, A. G. Macdiarmid, Macromolecules 1991, 24, 779;
c) Z. Wei, T. Laitinen, B. Smarsly, O. Ikkala, C. F. J. Faul, Angew. Chem., Int. Ed. 2005, 117, 761.
10.1002/ange.200460928 Google Scholar
- 29W. Wang, A. G. Macdiarmid, Synth. Met. 2002, 129, 199.
- 30Y. Cao, P. Smith, A. J. Heeger, Synth. Met. 1989, 32, 263.
- 31B. Pałys, P. Celuch, Electrochim. Acta 2006, 51, 4115.
- 32a) S. Stafström, J. L. Brédas, A. J. Epstein, H. S. Woo, D. B. Tanner, W. S. Huang, A. G. Macdiarmid, Phys. Rev. Lett. 1987, 59, 1464; b) A. J. Epstein, J. M. Ginder, F. Zuo, H.-S. Woo, D. B. Tanner, A. F. Richter, M. Angelopoulos, W.-S. Huang, A. G. Macdiarmid, Synth. Met. 1987, 21, 63; c) Y. H. Kim, C. Foster, J. Chiang, A. J. Heeger, Synth. Met. 1988, 26, 49; d) Y. Cao, Synth. Met. 1990, 35, 319.
- 33a) L. Zhang, M. Wan, Y. Wei, Macromol. Rapid Commun. 2006, 27, 366; b) J. Wu, Y. Sun, W. Xu, Q. Zhang, Synth. Met. 2014, 189, 177; c) D. Poussin, H. Morgan, P. J. Foot, Polym. Int. 2003, 52, 433.
- 34V. I. Krinichnyi, S. V. Tokarev, H.-K. Roth, M. Schrödner, B. Wessling, Synth. Met. 2006, 156, 1368.
- 35Z. Wei, C. F. J. Faul, Macromol. Rapid Commun. 2008, 29, 280.
- 36a) S. Ghosh, C. M. Reddy, Angew. Chem., Int. Ed. 2012, 124, 10465;
10.1002/ange.201204604 Google Scholarb) S. Hayashi, T. Koizumi, Angew. Chem., Int. Ed. 2016, 128, 2751.10.1002/ange.201509319 Google Scholar