Visible Light—Responsive Drug Delivery Nanoparticle via Donor–Acceptor Stenhouse Adducts (DASA)
Jeaniffer E. Yap
Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052 Australia
Search for more papers by this authorLin Zhang
Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052 Australia
Search for more papers by this authorJordan T. Lovegrove
Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052 Australia
Search for more papers by this authorJonathon E. Beves
Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052 Australia
Search for more papers by this authorCorresponding Author
Martina H. Stenzel
Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052 Australia
E-mail: [email protected]
Search for more papers by this authorJeaniffer E. Yap
Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052 Australia
Search for more papers by this authorLin Zhang
Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052 Australia
Search for more papers by this authorJordan T. Lovegrove
Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052 Australia
Search for more papers by this authorJonathon E. Beves
Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052 Australia
Search for more papers by this authorCorresponding Author
Martina H. Stenzel
Cluster for Advanced Macromolecular Design (CAMD), School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052 Australia
E-mail: [email protected]
Search for more papers by this authorAbstract
Stimuli-responsive drug release from a nanocarrier triggered by light enables the control of the amount of drug locally. Here, block copolymer micelles based on poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) as the hydrophilic block and a polymer with pendant donor–acceptor Stenhouse adducts (DASA) are used as a means to trigger the release of drugs under green light. The micelles are loaded with ellipticine to yield light-responsive nanoparticles with sizes of around 35 nm according to transmission electron microscopy (TEM) analysis. Two micelles with a drug loading content of 4.75 and 7.4 wt% are prepared, but the micelle with the higher drug loading content leads to substantial protein adsorption. The release of ellipticine from the micelle, which is monitored using the polarity-sensitive fluorescence of ellipticine, can be switched on by light and off by thermal recovery of DASA in the dark. The micelles are readily taken up by Michigan Cancer Foundation-7 breast cancer cells. Subsequent light irradiation leads to enhanced drug release inside the cell as seen by the enhanced fluorescence.
Conflict of Interest
The authors declare no conflict of interest.
Supporting Information
Filename | Description |
---|---|
marc202000236-sup-0001-SuppMat.pdf1.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Beaute, N. McClenaghan, S. Lecommandoux, Adv. Drug Delivery Rev. 2019, 138, 148.
- 2P. Xiao, J. Zhang, J. Zhao, M. H. Stenzel, Prog. Polym. Sci. 2017, 74, 1.
- 3A. Sanchis, J.-P. Salvador, M.-P. Marco, Colloids Surf., B 2019, 173, 825.
- 4L. Li, W. W. Yang, D. G. Xu, J. Drug Targeting 2019, 27, 423.
- 5M. M. Lino, L. Ferreira, Drug Discovery Today 2018, 23, 1062.
- 6S. Jia, W.-K. Fong, B. Graham, B. J. Boyd, Chem. Mater. 2018, 30, 2873.
- 7J. Boelke, S. Hecht, Adv. Opt. Mater. 2019, 7, 1900404.
- 8M. J. Davies, R. J. Truscott, J. Photochem. Photobiol., B 2001, 63, 114.
- 9C. Raulin, S. Karsai, Laser and IPL Technology in Dermatology and Aesthetic Medicine, Springer, Berlin, Heidelberg 2011.
- 10S. Helmy, S. Oh, F. A. Leibfarth, C. J. Hawker, J. Read de Alaniz, J. Org. Chem. 2014, 79, 11316.
- 11S. Helmy, F. A. Leibfarth, S. Oh, J. E. Poelma, C. J. Hawker, J. Read de Alaniz, J. Am. Chem. Soc. 2014, 136, 8169.
- 12M. Di Donato, M. M. Lerch, A. Lapini, A. D. Laurent, A. Iagatti, L. Bussotti, S. P. Ihrig, M. Medved, D. Jacquemin, W. Szymanski, W. J. Buma, P. Foggi, B. L. Feringa, J. Am. Chem. Soc. 2017, 139, 15596.
- 13N. Mallo, E. D. Foley, H. Iranmanesh, A. D. W. Kennedy, E. T. Luis, J. Ho, J. B. Harper, J. E. Beves, Chem. Sci. 2018, 9, 8242.
- 14M. M. Lerch, M. Medved, A. Lapini, A. D. Laurent, A. Iagatti, L. Bussotti, W. Szymański, W. J. Buma, P. Foggi, M. Di Donato, B. L. Feringa, J. Phys. Chem. A 2018, 122, 955.
- 15M. M. Lerch, S. J. Wezenberg, W. Szymanski, B. L. Feringa, J. Am. Chem. Soc. 2016, 138, 6344.
- 16N. Mallo, P. T. Brown, H. Iranmanesh, T. S. MacDonald, M. J. Teusner, J. B. Harper, G. E. Ball, J. E. Beves, Chem. Commun. 2016, 52, 13576.
- 17M. M. Lerch, W. Szymanski, B. L. Feringa, Chem. Soc. Rev. 2018, 47, 1910.
- 18J. R. Hemmer, S. O. Poelma, N. Treat, Z. A. Page, N. D. Dolinski, Y. J. Diaz, W. Tomlinson, K. D. Clark, J. P. Hooper, C. Hawker, J. R. de Alaniz, J. Am. Chem. Soc. 2016, 138, 13960.
- 19T. Senthilkumar, L. Zhou, Q. Gu, L. Liu, F. Lv, S. Wang, Angew. Chem., Int. Ed. 2018, 57, 13114.
- 20V. Marturano, H. Marcille, P. Cerruti, N. A. G. Bandeira, M. Giamberini, A. Trojanowska, B. Tylkowski, C. Carfagna, G. Ausanio, V. Ambrogi, ACS Appl. Nano Mater. 2019, 2, 4499.
- 21S. O. Poelma, S. S. Oh, S. Helmy, A. S. Knight, G. L. Burnett, H. T. Soh, C. J. Hawker, J. Read de Alaniz, Chem. Commun. 2016, 52, 10525.
- 22H. Zhao, D. Wang, Y. Fan, M. Ren, S. Dong, Y. Zheng, Langmuir 2018, 34, 15537.
- 23M. Nau, D. Seelinger, M. Biesalski, Adv. Mater. Interfaces 2019, 6, 1900378.
- 24G. Sinawang, B. Wu, J. Wang, S. Li, Y. He, Macromol. Chem. Phys. 2016, 217, 2409.
- 25S. Singh, K. Friedel, M. Himmerlich, Y. Lei, G. Schlingloff, A. Schober, ACS Macro Lett. 2015, 4, 1273.
- 26S. Ulrich, J. R. Hemmer, Z. A. Page, N. D. Dolinski, O. Rifaie-Graham, N. Bruns, C. J. Hawker, L. F. Boesel, J. Read de Alaniz, ACS Macro Lett. 2017, 6, 738.
- 27S. Helmy, J. Read de Alaniz, in Advances in Heterocyclic Chemistry (Eds: E. F. V. Scriven, C. A. Ramsden), Academic Press 2015, pp. 131–177.
10.1016/bs.aihch.2015.05.003 Google Scholar
- 28F.-Y. Tang, J.-N. Hou, K.-X. Liang, Y. Liu, L. Deng, Y.-N. Liu, New J. Chem. 2017, 41, 6071.
- 29S. Yang, J. Liu, Z. Cao, M. Li, Q. Luo, D. Qu, Dyes Pigm. 2018, 148, 341.
- 30M. M. Lerch, M. J. Hansen, W. A. Velema, W. Szymanski, B. L. Feringa, Nat. Commun. 2016, 7, 12054.
- 31D. Zhong, Z. Cao, B. Wu, Q. Zhang, G. Wang, Sens. Actuators, B 2018, 254, 385.
- 32A. Balamurugan, H. Lee, Macromolecules 2016, 49, 2568.
- 33Y. J. Diaz, Z. A. Page, A. S. Knight, N. J. Treat, J. R. Hemmer, C. J. Hawker, J. Read de Alaniz, Chemistry (Easton) 2017, 23, 3562.
- 34B. P. Mason, M. Whittaker, J. Hemmer, S. Arora, A. Harper, S. Alnemrat, A. McEachen, S. Helmy, J. Read de Alaniz, J. P. Hooper, Appl. Phys. Lett. 2016, 108, 041906.
- 35Q. Chen, Y. J. Diaz, M. C. Hawker, M. R. Martinez, Z. A. Page, S. Xiao-An Zhang, C. J. Hawker, J. Read De Alaniz, Macromolecules 2019, 52, 4370.
- 36O. Rifaie-Graham, S. Ulrich, N. F. B. Galensowske, S. Balog, M. Chami, D. Rentsch, J. R. Hemmer, J. Read de Alaniz, L. F. Boesel, N. Bruns, J. Am. Chem. Soc. 2018, 140, 8027.
- 37B. Wu, T. Xue, W. Wang, S. Li, J. Shen, Y. He, J. Mater. Chem. C 2018, 6, 8538.
- 38S. Jia, A. Tan, A. Hawley, B. Graham, B. J. Boyd, J. Colloid Interface Sci. 2019, 548, 151.
- 39M. Stiborová, J. Poljaková, E. Martínková, L. Bořek-Dohalská, T. Eckschlager, R. Kizek, E. Frei, Interdiscip. Toxicol. 2011, 4, 98.
- 40J. E. Yap, N. Mallo, D. S. Thomas, J. E. Beves, M. H. Stenzel, Polym. Chem. 2019, 10, 6515.
- 41M. M. Lerch, M. Di Donato, A. D. Laurent, M. Medved, A. Iagatti, L. Bussotti, A. Lapini, W. J. Buma, P. Foggi, W. Szymanski, B. L. Feringa, Angew. Chem., Int. Ed. 2018, 57, 8063.
- 42J. Liu, Y. Xiao, C. Allen, J. Pharm. Sci. 2004, 93, 132.
- 43F. Alexis, E. Pridgen, L. K. Molnar, O. C. Farokhzad, Mol. Pharmaceutics 2008, 5, 505.
- 44P. P. Karmali, D. Simberg, Expert Opin. Drug Delivery 2011, 8, 343.
- 45Q. Dai, C. Walkey, W. C. W. Chan, Angew. Chem., Int. Ed. 2014, 53, 5093.
- 46A. Piloni, C. K. Wong, F. Chen, M. Lord, A. Walther, M. H. Stenzel, Nanoscale 2019, 11, 23259.
- 47P. del Pino, B. Pelaz, Q. Zhang, P. Maffre, G. U. Nienhaus, W. J. Parak, Mater. Horiz. 2014, 1, 301.
- 48C. Cao, J. Zhao, M. Lu, C. J. Garvey, M. H. Stenzel, Biomacromolecules 2019, 20, 1545.