Multi-bump solutions for the nonlinear magnetic Schrödinger equation with logarithmic nonlinearity
Corresponding Author
Jun Wang
Department of Mathematics, Sun Yat-sen University, Guangzhou, China
Correspondence
Jun Wang, Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China.
Email: [email protected]
Search for more papers by this authorZhaoyang Yin
Department of Mathematics, Sun Yat-sen University, Guangzhou, China
School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
Search for more papers by this authorCorresponding Author
Jun Wang
Department of Mathematics, Sun Yat-sen University, Guangzhou, China
Correspondence
Jun Wang, Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China.
Email: [email protected]
Search for more papers by this authorZhaoyang Yin
Department of Mathematics, Sun Yat-sen University, Guangzhou, China
School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
Search for more papers by this authorAbstract
In this paper, we study the following nonlinear magnetic Schrödinger equation with logarithmic nonlinearity
REFERENCES
- 1C. O. Alves, Existence of multi-bump solutions for a class of quasilinear problems, Adv. Nonlinear. Stud. 6 (2006), 491–509. https://doi.org/10.1515/ans-2006-0401
10.1515/ans-2006-0401 Google Scholar
- 2C. O. Alves and I. S. Da Silva, Existence of multiple solutions for a Schrödinger logarithmic equation via Lusternik–Schnirelmann category, Anal. Appl. 6 (2023), 1477–1516. https://doi.org/10.1142/S0219530523500240
10.1142/S0219530523500240 Google Scholar
- 3C. O. Alves and C. Ji, Existence an concentration of positive solutions for a logarithmic Schrödinger equation via penalization method, Calc. Var. Partial Differ. Equ. 59 (2020), no. 1, 21. https://doi.org/10.1007/s00526-019-1674-1
10.1007/s00526-019-1674-1 Google Scholar
- 4C. O. Alves and C. Ji, Multi-peak positive solutions for a logarithmic Schrödinger equation via variational methods, Isr. J. Math. 259 (2023), 1–51. https://doi.org/10.1007/s11856-023-2494-8
10.1007/s11856?023?2494?8 Google Scholar
- 5C. O. Alves and C. Ji, Multi-bump positive solutions for a logarithmic Schrödinger equation with deepening potential well, Sci. China Math. 65 (2022), no. 8, 1577–1598. https://doi.org/10.1007/s11425-020-1821-9
10.1007/s11425-020-1821-9 Google Scholar
- 6A. V. Avdeenkov and K. G. Zloshchastiev, Quantum Bose liquids with logarithmic nonlinearity: self-sustainability and emergence of spatial extent, J. Phys. B. 44 (2011), 195–303. https://doi.org/10.1088/0953-4075/44/19/195303
10.1088/0953-4075/44/19/195303 Google Scholar
- 7I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics, Ann. Phys. 100 (1976), no. 1–2, 62–93. https://doi.org/10.1016/0003-4916(76)90057-9
- 8T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys. 85 (1982), no. 4, 549–561. https://doi.org/10.1007/BF01403504
- 9S. Cingolani, S. Secchi, and M. Squassina, Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, Proc. R. Soc. Edin. A 140 (2010), no. 5, 973–1009. https://doi.org/10.1017/s0308210509000584
10.1017/S0308210509000584 Google Scholar
- 10P. D'Avenia and M. Squassina, Ground states for fractional magnetic operators, ESAIM Control Optim. Calc. Var. 24 (2017), no. 1, 1–24. https://doi.org/10.1051/cocv/2016071
10.1051/cocv/2016071 Google Scholar
- 11M. Del Pino and J. Dolbeault, The optimal Euclidean -Sobolev logarithmic inequality, J. Funct. Anal. 197 (2003), no. 1, 151–161. https://doi.org/10.1016/S0022-1236(02)00070-8
10.1016/S0022-1236(02)00070-8 Google Scholar
- 12M. Del Pino and P. L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differ. Equ. 4 (1996), 121–137. http://capde.cmm.uchile.cl/files/2015/06/pino19961.pdf
- 13Y. H. Ding and K. Tanaka, Multiplicity of positive solutions of a nonlinear Schrödinger equation, Manuscr. Math. 112 (2003), 109–135. https://doi.org/10.1007/s00229-003-0397-x
- 14E. F. Hefter, Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics, Phys. Rev. A. 32 (1985), no. 3, 1201–1204. https://doi.org/10.1103/PhysRevA.32.1201
- 15G. Lauro, A note on a Korteweg fluid and the hydrodynamic form of the logarithmic Schrödinger equation, Geophys. Astrophys, Fluid Dyn. 102 (2008), no. 4, 373–380. https://doi.org/10.1080/03091920801956957
10.1080/03091920801956957 Google Scholar
- 16E. H. Lieb and M. Loss, Analysis, graduate studies in mathematics, American Mathematical Society, Providence, RI, 2001.
- 17C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Unione. Mat. Ital. 9 (1940), no. 3, 5–7.
- 18P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270–291. https://doi.org/10.1007/BF00946631
- 19M. Squassina and A. Szulkin, Multiple solution to logarithmic Schrödinger eqautions with periodic potential, Cal. Var. Partial Differ. Equ. 54 (2015), 585–597. https://doi.org/10.1007/s00526-014-0796-8
10.1007/s00526-014-0796-8 Google Scholar
- 20M. Squassina, Soliton dynamics for the nonlinear Schrödinger equation with magnetic field, Manuscr. Math. 130 (2009), no. 4, 461–494. https://doi.org/10.1007/s00229-009-0307-y
10.1007/s00229-009-0307-y Google Scholar
- 21A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. Henri Poincaré C. 3 (1986), no. 2, 77–109. https://doi.org/10.1016/S0294-1449(16)30389-4
- 22G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), no. 4, 353–372. https://doi.org/10.1007/BF02418013
10.1007/BF02418013 Google Scholar
- 23K. Tanaka and C. Zhang, Multi-bump solutions for logarithmic Schrödinger equations, Calc. Var. Partial Differ. Equ. 56 (2017), 1–35. https://doi.org/10.1007/s00526-017-1122-z
- 24T. Tao, M. Visan, and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Partial Differ. Equ. 32 (2007), no. 7–9, 1281–1343. https://doi.org/10.1080/03605300701588805
- 25M. Willem, Minimax theorems, progress in nonlinear differential equations and their applications, vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996.
- 26K. Yasue, Quantum mechanics of nonconservative systems, Ann. Phys. 114 (1978), 479–496. https://doi.org/10.1016/0003-4916(78)90279-8
- 27K. G. Zloshchastiev, Logarithmic nonlinearity in theories of quantum gravity: origin of time and observational consequences, Gravit. Cosmol. 16 (2010), no. 4, 288–297. https://doi.org/10.1134/S0202289310040067
10.1134/S0202289310040067 Google Scholar