Well-posedness and inviscid limits for the Keller–Segel–Navier–Stokes system of the parabolic–elliptic type
Corresponding Author
Taiki Takeuchi
Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan
Correspondence
Taiki Takeuchi, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Taiki Takeuchi
Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan
Correspondence
Taiki Takeuchi, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
Email: [email protected]
Search for more papers by this authorAbstract
We show the local well-posedness of the Keller–Segel system of the parabolic–elliptic type coupled with the Navier–Stokes system for arbitrary initial data with Sobolev regularities, where the solution is uniformly bounded with respect to the viscosity. We also show the continuous dependence of the solutions with respect to the initial data. As a result of the uniform boundedness of the solutions, we obtain inviscid limits of the system. The proof is mainly based on a priori estimates in the Sobolev spaces.
REFERENCES
- 1S. An and Q. Zhang, On the blowup for the 3D axisymmetric incompressible chemotaxis-Euler equations, J. Funct. Spaces 2021 (2021), 5541713.
10.1155/2021/5541713 Google Scholar
- 2H. Bahouri, J.-Y. Chemin, and R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343, Springer, Heidelberg, 2011, pp. xvi+523.
10.1007/978-3-642-16830-7 Google Scholar
- 3J. Bergh and J. Löfström, Interpolation spaces. An Introduction [Grundlehren der Mathematischen Wissenschaften], vol. 223, Springer-Verlag, Berlin, 1976, pp. x+207.
10.1007/978-3-642-66451-9 Google Scholar
- 4C. Cao and H. Kang, Global well-posedness of 2D chemotaxis Euler fluid systems, J. Differ. Equ. 294 (2021), 251–264.
10.1016/j.jde.2021.05.039 Google Scholar
- 5X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities, Calc. Var. Partial Differ. Equ. 55 (2016), no. 4, 107.
10.1007/s00526-016-1027-2 Google Scholar
- 6M. Chae, K. Kang, and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst. 33 (2013), no. 6, 2271–2297.
- 7M. Chae, K. Kang, and J. Lee, Global existence and temporal decay in Keller–Segel models coupled to fluid equations, Commun. Partial Differ. Equ. 39 (2014), no. 7, 1205–1235.
- 8R. R. Coifman and Y. Meyer, Nonlinear harmonic analysis, operator theory and P.D.E., Beijing Lectures in Harmonic Analysis (Beijing, 1984), Ann. Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 3–45.
- 9P. Constantin and M. Ignatova, On the Nernst–Planck–Navier–Stokes system, Arch. Ration. Mech. Anal. 232 (2019), no. 3, 1379–1428.
- 10C. Dombrowski, L. Cisneros, S. Chatkaew, R. E. Goldstein, and J. O. Kessler, Self-concentration and large-scale coherence in bacterial dynamics, Phys. Rev. Lett. 93 (2004), 098103.
- 11R. Duan, A. Lorz, and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Commun. Partial Differ. Equ. 35 (2010), no. 9, 1635–1673.
- 12J. Fan, D. Liu, B. Samet, and Y. Zhou, A regularity criterion for the Keller–Segel–Euler system, Bound. Value Probl. (2017), 124, https://doi.org/10.1186/s13661-017-0860-3.
10.1186/s13661-017-0860-3 Google Scholar
- 13Y. Gong and S. He, On the -critical-mass threshold of a Patlak–Keller–Segel–Navier–Stokes system, SIAM J. Math. Anal. 53 (2021), no. 3, 2925–2956.
- 14L. Grafakos and S. Oh, The Kato–Ponce inequality, Commun. Partial Differ. Equ. 39 (2014), no. 6, 1128–1157.
- 15Z. Guo, J. Li, and Z. Yin, Local well-posedness of the incompressible Euler equations in and the inviscid limit of the Navier–Stokes equations, J. Funct. Anal. 276 (2019), no. 9, 2821–2830.
- 16A. A. Himonas and G. Misiołek, Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics, Commun. Math. Phys. 296 (2010), no. 1, 285–301.
- 17K. Kang, J. Lee, and M. Winkler, Global weak solutions to a chemotaxis-Navier–Stokes system in , Discrete Contin. Dyn. Syst. 42 (2022), no. 11, 5201–5222.
10.3934/dcds.2022091 Google Scholar
- 18T. Kato, Nonstationary flows of viscous and ideal fluids in , J. Funct. Anal. 9 (1972), 296–305.
10.1016/0022-1236(72)90003-1 Google Scholar
- 19T. Kato and C. Y. Lai, Nonlinear evolution equations and the Euler flow, J. Funct. Anal. 56 (1984), no. 1, 15–28.
- 20T. Kato and G. Ponce, Commutator estimates and the Euler and Navier–Stokes equations, Commun. Pure Appl. Math. 41 (1988), no. 7, 891–907.
- 21E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (1970), no. 3, 399–415.
- 22H. Kozono, M. Miura, and Y. Sugiyama, Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid, J. Funct. Anal. 270 (2016), no. 5, 1663–1683.
10.1016/j.jfa.2015.10.016 Google Scholar
- 23H. Kozono, M. Miura, and Y. Sugiyama, Time global existence and finite time blow-up criterion for solutions to the Keller–Segel system coupled with the Navier–Stokes fluid, J. Differ. Equ. 267 (2019), no. 9, 5410–5492.
- 24H. Kozono, T. Ogawa, and Y. Taniuchi, Navier–Stokes equations in the Besov space near and BMO, Kyushu J. Math. 57 (2003), no. 2, 303–324.
10.2206/kyushujm.57.303 Google Scholar
- 25C.-C. Lai, J. Wei, and Y. Zhou, Global existence of free-energy solutions to the 2D Patlak–Keller–Segel–Navier–Stokes system with critical and subcritical mass, Indiana Univ. Math. J. 72 (2023), no. 1, 43–87.
- 26J. Lankeit, Long-term behaviour in a chemotaxis-fluid system with logistic source, Math. Models Methods Appl. Sci. 26 (2016), no. 11, 2071–2109.
- 27J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model: global existence, Ann. Inst. H. PoincaréC 28 (2011), no. 5, 643–652.
- 28A. Lorz, A coupled Keller–Segel–Stokes model: global existence for small initial data and blow-up delay, Commun. Math. Sci. 10 (2012), no. 2, 555–574.
- 29A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and their Applications, vol. 16, Birkhäuser Verlag, Basel, 1995, pp. xviii+424.
- 30N. Masmoudi, Remarks about the inviscid limit of the Navier–Stokes system, Commun. Math. Phys. 270 (2007), no. 3, 777–788.
- 31Y. Sawano, Theory of Besov spaces, Developments in Mathematics, vol. 56, Springer, Singapore, 2018, pp. xxiii+945.
10.1007/978-981-13-0836-9 Google Scholar
- 32E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ, 1970, pp. xiv+290.
- 33H. S. G. Swann, The convergence with vanishing viscosity of nonstationary Navier–Stokes flow to ideal flow in , Trans. Amer. Math. Soc. 157 (1971), 373–397.
- 34T. Takeuchi, Various regularity estimates for the Keller–Segel–Navier–Stokes system in Besov spaces, J. Differ. Equ. 343 (2023), 606–658.
- 35Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system, Z. Angew. Math. Phys. 67 (2016), no. 6, 138.
10.1007/s00033-016-0732-1 Google Scholar
- 36I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler, and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci. USA 102 (2005), no. 7, 2277–2282.
- 37M. Winkler, Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops, Commun. Partial Differ. Equ. 37 (2012), no. 2, 319–351.
- 38M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier–Stokes system, Arch. Ration. Mech. Anal. 211 (2014), no. 2, 455–487.
- 39M. Winkler, Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system, Ann. Inst. H. PoincaréC 33 (2016), no. 5, 1329–1352.
- 40M. Winkler, Small-mass solutions in the two-dimensional Keller–Segel system coupled to the Navier–Stokes equations, SIAM J. Math. Anal. 52 (2020), no. 2, 2041–2080.
- 41G. Zhang and Q. Zhang, Global existence of weak solutions for the 3D chemotaxis-Euler equations, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 112 (2018), no. 1, 195–207.
10.1007/s13398-016-0374-3 Google Scholar
- 42Q. Zhang, Blowup criterion of smooth solutions for the incompressible chemotaxis-Euler equations, ZAMM Z. Angew. Math. Mech. 96 (2016), no. 4, 466–476.
10.1002/zamm.201500040 Google Scholar
- 43Q. Zhang, On the inviscid limit of the three -dimensional incompressible chemotaxis-Navier–Stokes equations, Nonlinear Anal. Real World Appl. 27 (2016), 70–79.