Odd-dimensional counterparts of abelian complex and hypercomplex structures
Corresponding Author
Adrián Andrada
FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Av. Medina Allende S/N, Ciudad Universitaria, Córdoba, Argentina
Correspondence
Adrián Andrada, FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Av. Medina Allende S/N, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
Email: [email protected]
Search for more papers by this authorGiulia Dileo
Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, Bari, Italy
Search for more papers by this authorCorresponding Author
Adrián Andrada
FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Av. Medina Allende S/N, Ciudad Universitaria, Córdoba, Argentina
Correspondence
Adrián Andrada, FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Av. Medina Allende S/N, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
Email: [email protected]
Search for more papers by this authorGiulia Dileo
Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, Bari, Italy
Search for more papers by this authorAbstract
We introduce the notion of abelian almost contact structures on an odd-dimensional real Lie algebra . We investigate correspondences with even-dimensional Lie algebras endowed with an abelian complex structure, and with Kähler Lie algebras when carries a compatible inner product. The classification of 5-dimensional Sasakian Lie algebras with abelian structure is obtained. Later, we introduce abelian almost 3-contact structures on real Lie algebras of dimension , obtaining the classification of these Lie algebras in dimension 7. Finally, we deal with the geometry of a Lie group G endowed with a left invariant abelian almost 3-contact metric structure. We determine conditions for G to admit a canonical metric connection with skew torsion, which plays the role of the Bismut connection for hyperKähler with torsion (HKT) structures arising from abelian hypercomplex structures. We provide examples and discuss the parallelism of the torsion of the canonical connection.
REFERENCES
- 1I. Agricola, The Srní lectures on non-integrable geometries with torsion, Arch. Math. (Brno) 42 (2006), suppl., 5–84.
- 2I. Agricola and G. Dileo, Generalizations of 3-Sasakian manifolds and skew torsion, Adv. Geom. 20 (2020), no. 3, 331–374.
- 3I. Agricola, A. C. Ferreira, and R. Storm, Quaternionic Heisenberg groups as naturally reductive homogeneous spaces, Int. J. Geom. Methods Mod. Phys. 12 (2015), no. 8, 1560007.
- 4I. Agricola and T. Friedrich, 3-Sasakian manifolds in dimension seven, their spinors and G2-structures, J. Geom. Phys. 60 (2010), no. 2, 326–332.
- 5A. Andrada, M. L. Barberis, and I. Dotti, Abelian Hermitian geometry, Differential Geom. Appl. 30 (2012), 509–519.
- 6A. Andrada, M. L. Barberis, I. Dotti, and G. Ovando, Product structures on four dimensional solvable Lie algebras, Homology Homotopy Appl. 7 (2005), 9–37.
- 7A. Andrada, A. Fino, and L. Vezzoni, A class of Sasakian 5-manifolds, Transform. Groups 14 (2009), 493–512.
- 8M. L. Barberis, Hypercomplex structures on four-dimensional Lie groups, Proc. Amer. Math. Soc. 125 (1997), 1043–1054.
- 9M. L. Barberis and I. Dotti, Hypercomplex structures on a class of solvable Lie groups, Q. J. Math. 47 (1996), 389–404.
- 10M. L. Barberis and I. Dotti, Abelian complex structures on solvable Lie algebras, J. Lie Theory 14 (2004), no. 1, 25–34.
- 11M. L. Barberis, I. Dotti, and R. Miatello, On certain locally homogeneous Clifford manifolds, Ann. Global Anal. Geom. 13 (1995), 289–301.
- 12D. E. Blair, Riemannian geometry of contact and symplectic manifolds. 2nd ed., vol. 203, Progress in Mathematics, Birkhäuser, Boston, 2010.
- 13G. Calvaruso, A. Perrone, Cosymplectic and α-cosymplectic Lie algebras, Complex Manifolds 3 (2016), 252–270.
10.1515/coma-2016-0013 Google Scholar
- 14B. Cappelletti-Montano, A. De Nicola, and I. Yudin, Cosymplectic p-spheres, J. Geom. Phys. 100 (2016), 68–79.
- 15R. Cleyton, A. Moroianu, and U. Semmelmann, Metric connections with parallel skew-symmetric torsion, Adv. Math. 378 (2021), 107519.
- 16R. Cleyton and A. Swann, Einstein metrics via intrinsic or parallel torsion, Math. Z. 247 (2004), no. 3, 513–528.
- 17D. Conti and M. Fernández, Nilmanifolds with a calibrated G2-structure, Differential Geom. Appl. 29 (2011), 493–506.
- 18D. Conti and A. Fino, Calabi-Yau cones from contact reduction, Ann. Global Anal. Geom. 38 (2010), 93–118.
- 19D. Conti and T. B. Madsen, The odd side of torsion geometry, Ann. Mat. Pura Appl. 193 (2014), no. 4, 1041–1067.
- 20A. Diatta, Left-invariant contact structures on Lie groups, Differential Geom. Appl. 26 (2008), 544–552.
- 21G. Dileo, A classification of certain almost α-Kenmotsu manifolds, Kodai Math. J. 34 (2011), no. 3, 426–445.
- 22I. Dotti and A. Fino, Abelian hypercomplex 8-dimensional nilmanifolds, Ann. Global Anal. Geom. 18 (2000), no. 1, 47–59.
- 23I. Dotti and A. Fino, Hypercomplex nilpotent Lie groups, Contemp. Math. 288 (2001), 310–314.
10.1090/conm/288/04841 Google Scholar
- 24I. Dotti and A. Fino, Hyperkähler torsion structures invariant by nilpotent Lie groups, Classical Quantum Gravity 19 (2002), 551–562.
- 25C. Draper, M. Ortega, and F. J. Palomo, Affine connections on 3-Sasakian homogeneous manifolds, Math. Z. 294 (2020), no. 1-2, 817–868.
- 26A. Fino and G. Grantcharov, Properties of manifolds with skew-symmetric torsion and special holonomy, Adv. Math. 89 (2004), no. 2, 439–450.
- 27A. Fino and A. Tomassini, Generalized G2-manifolds and -structures, Internat. J. Math. 19 (2008), 1147–1165.
- 28A. Fino and L. Vezzoni, Some results on cosymplectic manifolds, Geom. Dedicata 151 (2011), 41–58.
- 29T. Friedrich and S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math. 6 (2002), no. 2, 303–335.
10.4310/AJM.2002.v6.n2.a5 Google Scholar
- 30G. Grantcharov and Y. S. Poon, Geometry of hyper-Kähler connections with torsion, Comm. Math. Phys. 213 (2000), no. 1, 19–37.
- 31J. Heber, Noncompact homogeneous Einstein spaces, Invent. Math. 133 (1998), no. 2, 279–352.
- 32G. Itkowitz, S. Rothman, and H. Strassberg, A note on the real representations of , J. Pure Appl. Algebra 69 (1990), 285–294.
- 33S. Ivanov and G. Papadopoulos, Vanishing theorems and string backgrounds, Classical Quantum Gravity 18 (2001), 1089–1110.
- 34A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147–153.
- 35A. I. Malcev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR, Ser. Mat. 13 (1949), 9–32; English translation in Am. Math. Soc. Transl., No. 39 (1951).
- 36J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. Math. 21 (1976), 293–329.
- 37D. Perrone, Homogeneous contact Riemannian three-manifolds, Illinois J. Math. 42 (1998), 243–256.
- 38P. Petravchuk, Lie algebras decomposable as a sum of an abelian and a nilpotent subalgebra, Ukr. Math. J. 40 (1988), 385–388.
- 39K. Yano, S. Ishihara, and M. Konishi, Normality of almost contact 3-structure, Tohoku Math. J. 25 (1973), 167–175.