Remarks on derived complete modules and complexes
Corresponding Author
Leonid Positselski
Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic
Laboratory of Algebra and Number Theory, Institute for Information Transmission Problems, Moscow, Russia
Correspondence
Leonid Positselski, Institute of Mathematics, Czech Academy of Sciences, Žitná 609/25, 115 67 Prague 1, Czech Republic.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Leonid Positselski
Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic
Laboratory of Algebra and Number Theory, Institute for Information Transmission Problems, Moscow, Russia
Correspondence
Leonid Positselski, Institute of Mathematics, Czech Academy of Sciences, Žitná 609/25, 115 67 Prague 1, Czech Republic.
Email: [email protected]
Search for more papers by this authorAbstract
Let R be a commutative ring and a finitely generated ideal. We discuss two definitions of derived I-adically complete (also derived I-torsion) complexes of R-modules, which appear in the literature: the idealistic and the sequential ones. The two definitions are known to be equivalent for a weakly proregular ideal I; we show that they are different otherwise. We argue that the sequential approach works well, but the idealistic one needs to be reinterpreted or properly understood. We also consider I-adically flat R-modules.
REFERENCES
- 1J. Adámek and J. Rosický, Locally presentable and accessible categories, London Math. Society Lecture Note Series 189, Cambridge University Press, Cambridge, 1994.
10.1017/CBO9780511600579 Google Scholar
- 2A. Beilinson, p-adic periods and derived de Rham cohomology, J. Amer. Math. Soc. 25 (2012), no. 3, 715–738, arXiv:1102.1294 [math.AG].
- 3B. Bhatt and P. Scholze, The pro-étale topology for schemes, Astérisque 369 (2015), 99–201, arXiv:1309.1198 [math.AG].
- 4A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer, Berlin, 1972–1987.
10.1007/978-3-540-38117-4 Google Scholar
- 5W. G. Dwyer and J. P. C. Greenlees, Complete modules and torsion modules, Amer. J. Math. 124 (2002), no. 1, 199–220.
- 6S. Eilenberg and J. C. Moore, Foundations of relative homological algebra, Mem. Amer. Math. Soc. 55 (1965), 39 pp.
- 7P. C. Eklof and J. Trlifaj, How to make Ext vanish, Bull. Lond. Math. Soc. 33 (2001), no. 1, 41–51.
- 8I. Emmanouil, Mittag-Leffler condition and the vanishing of , Topology 35 (1996), no. 1, 267–271.
10.1016/0040-9383(94)00056-5 Google Scholar
- 9E. Enochs and S. Estrada, Relative homological algebra in the category of quasi-coherent sheaves, Adv. Math. 194 (2005), no. 2, 284–295.
- 10W. Geigle and H. Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), no. 2, 273–343.
- 11J. P. C. Greenlees and J. P. May, Derived functors of I-adic completion and local homology, J. Algebra 149 (1992), no. 2, 438–453.
- 12D. K. Harrison, Infinite abelian groups and homological methods, Annals of Math. 69 (1959), no. 2, 366–391.
- 13R. Hartshorne, Residues and duality (with an appendix by P. Deligne), Lecture Notes in Math. 20, Springer, Berlin, 1966.
10.1007/BFb0080482 Google Scholar
- 14R. Hartshorne, Local cohomology, A seminar given by A. Grothendieck, Harvard Univ., Fall 1961, Lecture Notes in Math. 41, Springer, Berlin, 1967.
10.1007/BFb0073971 Google Scholar
- 15M. Hrbek and J. Št'ovíček, Tilting classes over commutative rings, Forum Math. 32 (2020), no. 1, 235–267, arXiv:1701.05534 [math.AC].
- 16U. Jannsen, Continuous étale cohomology, Math. Annalen 280 (1988), no. 2, 207–245.
- 17A. J. de Jong et al., The stacks project, https://stacks.math.columbia.edu/
- 18M. Kashiwara and P. Schapira, Deformation quantization modules, Astérisque 345 (2012), vi+147 pp., arXiv:1003.3304 [math.AG].
- 19E. Matlis, Cotorsion modules, Memoirs Amer. Math. Soc. 49 (1964), 66 pp.
- 20A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236.
- 21A. Neeman, A counterexample to a 1961 “theorem” in homological algebra (with an appendix by P. Deligne), Invent. Math. 48 (2002), no. 2, 397–420.
- 22M. Porta, L. Shaul, and A. Yekutieli, On the homology of completion and torsion, Algebr. Represent. Theory 17 (2014), no. 1, 31–67, arXiv:1010.4386 [math.AC], Erratum in Algebras Repres. Theory 18 (2015), no. 5, 1401–1405, arXiv:1506.07765 [math.AC].
- 23M. Porta, L. Shaul, and A. Yekutieli, Cohomologically cofinite complexes, Commun. Algebra 43 (2015), no. 2, 597–615, arXiv:1208.4064 [math.AC].
- 24L. Positselski, Weakly curved A∞-algebras over a topological local ring, Mém. Soc. Math. Fr. (N.S.) 159, 2018, pp. vi+206, arXiv:1202.2697 [math.CT].
- 25L. Positselski, Contraherent cosheaves, arXiv:1209.2995 [math.CT].
- 26L. Positselski, Contramodules, Confluentes Math. 13 (2021), no. 2, 93–182, arXiv:1503.00991 [math.CT].
10.5802/cml.78 Google Scholar
- 27L. Positselski, Dedualizing complexes and MGM duality, J. Pure Appl. Algebra 220 (2016), no. 12, 3866–3909, arXiv:1503.05523 [math.CT].
- 28L. Positselski, Contraadjusted modules, contramodules, and reduced cotorsion modules, Moscow Math. J. 17 (2017), no. 3, 385–455, arXiv:1605.03934 [math.CT].
- 29L. Positselski, Triangulated Matlis equivalence, J. Algebra Appl. 17 (2018), no. 4, 1850067, arXiv:1605.08018 [math.CT].
- 30L. Positselski, Abelian right perpendicular subcategories in module categories, arXiv:1705.04960 [math.CT].
- 31L. Positselski and J. Rosický, Covers, envelopes, and cotorsion theories in locally presentable abelian categories and contramodule categories, J. Algebra 483 (2017), 83–128, arXiv:1512.08119 [math.CT].
- 32L. Positselski and A. Slávik, Flat morphisms of finite presentation are very flat, Ann. Mat. Pura Appl. 199 (2020), no. 3, 875–924, arXiv:1708.00846 [math.AC].
- 33L. Positselski and J. Št'ovíček, The tilting–cotilting correspondence, Intern. Math. Research Notices 2021 (2021), no. 1, 189–274, arXiv:1710.02230 [math.CT].
- 34M. Raynaud and L. Gruson, Critères de platitude et de projectivité: Techniques de “platification” d'un module, Invent. Math. 13 (1971), no. 1–2, 1–89.
- 35P. Schenzel, Proregular sequences, local cohomology, and completion, Math. Scand. 92 (2003), no. 2, 161–180.
- 36P. Schenzel and A.-M. Simon, Completion, Čech and local homology and cohomology, Interations between them, Springer Monographs in Mathematics, Springer, Cham, 2018.
10.1007/978-3-319-96517-8 Google Scholar
- 37P. Schenzel and A.-M. Simon, Torsion of injective modules and weakly pro-regular sequences, Commun. Algebra 48 (2020), no. 9, 3637–3650, arXiv:2003.07266 [math.AC]
- 38P. Scholze, Lectures on condensed mathematics (all the results joint with D. Clausen), 2019, https://www.math.uni-bonn.de/people/scholze/Condensed.pdf
- 39A.-M. Simon, Approximations of complete modules by complete big Cohen–Macaulay modules over a Cohen–Macaulay local ring, Algebr. Represent. Theory 12 (2009), no. 2–5, 385–400.
- 40L. Shaul, Completion and torsion over commutative DG rings, Israel J. Math. 232 (2019), no. 2, 531–588, arXiv:1605.07447 [math.AC].
- 41N. Spaltenstein, Resolutions of unbounded complexes, Compos. Math. 65 (1988), no. 2, 121–154.
- 42R. Vyas and A. Yekutieli, Weak proregularity, weak stability, and the noncommutative MGM equivalence, J. Algebra 513 (2018) 265–325, arXiv:1608.03543 [math.RA].
- 43A. Yekutieli, On flatness and completion for infinitely generated modules over noetherian rings, Commun. Algebra 39 (2011), no. 11, 4221–4245, arXiv:0902.4378 [math.AC].
- 44A. Yekutieli, Flatness and completion revisited, Algebr. Represent. Theory 21 (2018), no. 4, 717–736, arXiv:1606.01832 [math.AC].
- 45A. Yekutieli, Weak proregularity, derived completion, adic flatness, and prisms, J. Algebra 583 (2021), 126–152, arXiv:2002.04901 [math.AC].