Volume 285, Issue 1 pp. 74-102
Research Article

A new and self-contained presentation of the theory of boundary operators for slit diffraction and their logarithmic approximations

Norbert Gorenflo

Corresponding Author

Norbert Gorenflo

Beuth Hochschule für Technik Berlin, Fachbereich II, Luxemburger Strasse 10, 13353 Berlin, Germany

Norbert Gorenflo, Phone: +49 30 4504 2267, Fax: +49 30 4504 2011

Matthias Kunik, Otto-von-Guericke-Universität, Institut für Analysis und Numerik, Universitätsplatz 2, 39106 Magdeburg, Germany. Phone: +49 391 67 12877, Fax: +49 391 67 18073

Search for more papers by this author
Matthias Kunik

Corresponding Author

Matthias Kunik

Otto-von-Guericke-Universität, Institut für Analysis und Numerik, Universitätsplatz 2, 39106 Magdeburg, Germany

Norbert Gorenflo, Phone: +49 30 4504 2267, Fax: +49 30 4504 2011

Matthias Kunik, Otto-von-Guericke-Universität, Institut für Analysis und Numerik, Universitätsplatz 2, 39106 Magdeburg, Germany. Phone: +49 391 67 12877, Fax: +49 391 67 18073

Search for more papers by this author
First published: 28 September 2011
Citations: 2

Abstract

We present a new and self-contained theory for mapping properties of the boundary operators for slit diffraction occurring in Sommerfeld's diffraction theory, covering two different cases of the polarisation of the light. This theory is entirely developed in the context of the boundary operators with a Hankel kernel and not based on the corresponding mixed boundary value problem for the Helmholtz equation. For a logarithmic approximation of the Hankel kernel we also study the corresponding mapping properties and derive explicit solutions together with certain regularity results.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.