A new and self-contained presentation of the theory of boundary operators for slit diffraction and their logarithmic approximations
Corresponding Author
Norbert Gorenflo
Beuth Hochschule für Technik Berlin, Fachbereich II, Luxemburger Strasse 10, 13353 Berlin, Germany
Norbert Gorenflo, Phone: +49 30 4504 2267, Fax: +49 30 4504 2011
Matthias Kunik, Otto-von-Guericke-Universität, Institut für Analysis und Numerik, Universitätsplatz 2, 39106 Magdeburg, Germany. Phone: +49 391 67 12877, Fax: +49 391 67 18073
Search for more papers by this authorCorresponding Author
Matthias Kunik
Otto-von-Guericke-Universität, Institut für Analysis und Numerik, Universitätsplatz 2, 39106 Magdeburg, Germany
Norbert Gorenflo, Phone: +49 30 4504 2267, Fax: +49 30 4504 2011
Matthias Kunik, Otto-von-Guericke-Universität, Institut für Analysis und Numerik, Universitätsplatz 2, 39106 Magdeburg, Germany. Phone: +49 391 67 12877, Fax: +49 391 67 18073
Search for more papers by this authorCorresponding Author
Norbert Gorenflo
Beuth Hochschule für Technik Berlin, Fachbereich II, Luxemburger Strasse 10, 13353 Berlin, Germany
Norbert Gorenflo, Phone: +49 30 4504 2267, Fax: +49 30 4504 2011
Matthias Kunik, Otto-von-Guericke-Universität, Institut für Analysis und Numerik, Universitätsplatz 2, 39106 Magdeburg, Germany. Phone: +49 391 67 12877, Fax: +49 391 67 18073
Search for more papers by this authorCorresponding Author
Matthias Kunik
Otto-von-Guericke-Universität, Institut für Analysis und Numerik, Universitätsplatz 2, 39106 Magdeburg, Germany
Norbert Gorenflo, Phone: +49 30 4504 2267, Fax: +49 30 4504 2011
Matthias Kunik, Otto-von-Guericke-Universität, Institut für Analysis und Numerik, Universitätsplatz 2, 39106 Magdeburg, Germany. Phone: +49 391 67 12877, Fax: +49 391 67 18073
Search for more papers by this authorAbstract
We present a new and self-contained theory for mapping properties of the boundary operators for slit diffraction occurring in Sommerfeld's diffraction theory, covering two different cases of the polarisation of the light. This theory is entirely developed in the context of the boundary operators with a Hankel kernel and not based on the corresponding mixed boundary value problem for the Helmholtz equation. For a logarithmic approximation of the Hankel kernel we also study the corresponding mapping properties and derive explicit solutions together with certain regularity results.
References
- 1 M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover Publications, Inc., 1968).
- 2 M. A. Bastos and A. F. dos Santos, Convolution equations of the first kind on a finite interval in Sobolev spaces, Integral Equations Oper. Theory 13, 638–659 (1990).
- 3 J. A. Belward, The solution of an integral equation of the first kind on a finite interval, Q. Appl. Math. 27, 313–321 (1969).
- 4
M. Born and
E. Wolf,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Seventh ed.
(Cambridge University Press, 1999).
10.1017/CBO9781139644181 Google Scholar
- 5 C. J. Bouwkamp, Diffraction theory, Reports on Progress in Physics XVII, 35–100 (1954).
- 6 L. Castro and D. Kapanadze, Pseudo differential operators in a wave diffraction problem with impedance conditions, Fract. Calc. Appl. Anal. 11(1), 15–26 (2008).
- 7 L. Castro and D. Kapanadze, The impedance boundary-value problem of diffraction by a strip, J. Math. Anal. Appl. 337, 1031–1040 (2008).
- 8 L. Castro and D. Kapanadze, Dirichlet-Neumann-impedance boundary-value problems arising in rectangular wedge diffraction problems, in: Proceedings of the American Mathematical Society Vol. 136 (2008), pp. 2113–2123.
- 9 J. Dörr, Zwei Integralgleichungen erster Art, die sich mit Hilfe Mathieuscher Funktionen lösen lassen, ZAMP III, 427–439 (1952).
- 10 G. I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Operators (American Mathematical Society, Providence, RI, 1981).
- 11 N. Gorenflo, Null space distributions – a new approach to finite convolution equations with a Hankel kernel, Integral Equations Oper. Theory 35, 366–377 (1999).
- 12 N. Gorenflo, A characterization of the range of a finite convolution operator with a Hankel kernel, Integral Transforms Spec. Funct. 12, 27–36 (2001).
- 13 N. Gorenflo, A new explicit solution method for the diffraction through a slit, ZAMP 53, 877–886 (2002).
- 14 N. Gorenflo, A new explicit solution method for the diffraction through a slit – Part 2, ZAMP 58, 16–36 (2007).
- 15 N. Gorenflo and M. Werner, Solution of a finite convolution equation with a Hankel kernel by matrix factorization, SIAM J. Math. Anal. 28, 434–451 (1997).
- 16 I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Corrected and Enlarged ed. (Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980).
- 17 M. Kunik and P. Skrzypacz, Diffraction of light revisited, Math. Methods Appl. Sci. 31(7), 793–820 (2008).
- 18 G. E. Latta, The solution of a class of integral equations, J. Ration. Mech. Anal. 5, 821–834 (1956).
- 19 P. A. Mandrik, Application of Laplace and Hankel transforms to solution of mixed nonstationary boundary value problems, Integral Transforms Spec. Funct. 13, 277–283 (2002).
- 20 W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge University Press, Cambridge, 2000).
- 21 E. Meister, Einige gelöste und ungelöste kanonische Probleme der mathematischen Beugungstheorie, Expo. Math. 5, 193–237 (1987).
- 22 E. Meister, P. A. Santos, and F. S. Teixeira, A Sommerfeld-type diffraction problem with second-order boundary conditions, Z. Angew. Math. Mech. 72(12), 621–630 (1992).
- 23
J. Meixner,
Die Kantenbedingung in der Theorie der Beugung elektromagnetischer Wellen an vollkommen leitenden ebenen Schirmen,
Annalen der Physik
441(1), 1–9 (1949).
10.1002/andp.19494410103 Google Scholar
- 24 P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I (McGraw-Hill, New York, Toronto, London, 1953).
- 25 A. Moura Santos and F.-O. Speck, Sommerfeld diffraction problems with oblique derivatives, Math. Methods Appl. Sci. 20(7), 635–652 (1997).
- 26 B. Noble, Methods based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations (Pergamon Press, New York, London, Paris, Los Angeles, 1958).
- 27 G. O. Okikiolu, Aspects of the Theory of Bounded Integral Operators in Lp-spaces (Academic Press, London, New York, 1971).
- 28
B. V. Pal'cev,
A generalization of the Wiener-Hopf method for convolution equations on a finite interval with symbols having power-like asymptotics at infinity,
Math. USSR Sb.
41(3), 289–328 (1982).
10.1070/SM1982v041n03ABEH002235 Google Scholar
- 29 F. Penzel, Sobolev space methods for dual integral equations in axialsymmetric screen problems, SIAM J. Math. Anal. 23, 1167–1181 (1992).
- 30 A. D. Polyanin and A. V. Manzhirov, Handbook of Integral Equations (CRC Press, Boca Raton, Boston, London, New York, Washington D.C., 1998).
- 31 W. Rudin, Functional Analysis (Tata/McGraw-Hill, New Delhi, India, reprinted 1979).
- 32 A. F. dos Santos and F. S. Teixeira, The Sommerfeld problem revisited: Solution spaces and the edge conditions, J. Math. Anal. Appl. 143(2), 341–357 (1989).
- 33 W. Schmeidler, Integralgleichungen mit Anwendungen in Physik und Technik, Band I, Lineare Integralgleichungen (Akademische Verlagsgesellschaft, Geest & Portig K.-G., Leipzig, 1950).
- 34 A. V. Shanin, To the problem of diffraction on a slit: Some properties of Schwarzschild's series, in: Proceedings of the International Seminar “Day on Diffraction Millennium Workshop” (St. Petersburg, Russia, 2000), pp. 143–155.
- 35 A. V. Shanin, Three theorems concerning diffraction by a strip or a slit, Q. J. Mech. Appl. Math. 54, 107–137 (2001).
- 36 A. Sommerfeld, Vorlesungen über Theoretische Physik, Band IV, Optik (Verlag Harri Deutsch, 1989).
- 37
A. Sommerfeld,
Mathematische Theorie der Diffraction,
Math. Ann.
47(2,3), 317–374 (1896).
10.1007/BF01447273 Google Scholar
- 38 R. Spahn, The diffraction of a plane wave by an infinite slit. I, Q. Appl. Math. 40(1), 105–110 (1982/83).
- 39 M. H. Williams, Diffraction by a finite strip, Q. J. Mech. Appl. Math. 35(1), 103–124 (1982).
- 40 P. Wolfe, On the inverse of an integral operator, in: Proceedings of the American Mathematical Society Vol. 25 (1970), pp. 443–448.