Monolithic Spin-Multiplexing Metalens for Dual-Functional Imaging
Zhenyu Xing
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorZhelin Lin
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorNiu Liu
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorHao Gao
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorYuhui Hu
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Zeyang Liu
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZijian Jiang
School of Future Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorXinliang Zhang
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Cheng Zhang
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
School of Future Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZhenyu Xing
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorZhelin Lin
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorNiu Liu
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorHao Gao
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorYuhui Hu
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Zeyang Liu
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorZijian Jiang
School of Future Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorXinliang Zhang
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Cheng Zhang
School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
School of Future Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
Optical microscopic imaging technology is an essential tool for exploring and understanding the microcosmic realm. Among various imaging modes, bright-field and spiral-phase-contrast imaging are widely used, each capable of extracting distinct morphological information from target objects. However, conventional microscopic imaging devices and systems typically operate in a single mode or require additional modules for mode switching. Here, we present a monolithic photonic spin-multiplexing metalens operating in the red and near-infrared regions, which leverages a spin-multiplexed point spread function to seamlessly switch between bright-field and spiral-phase-contrast imaging modes by simply adjusting the spin state of illumination light. The device demonstrates operational efficiency of up to 80% and imaging resolution better than 4.4 µm (228 lp mm−1) in both modes. The metalens's dual-functional imaging performance is validated with both amplitude-type (custom-made metallic patterns) and phase-type (frog tongue epithelium cells and onion epidermal cells) objects. This work provides a viable solution for compact, lightweight, and easily switchable multi-functional microscopic imaging systems, opening new avenues for applications in biomedical imaging, clinical diagnostics, and material characterization.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
lpor202401993-sup-0001-SuppMat.pdf640.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Araki, Mech. Eng. Rev. 2017, 4, 16.
10.1299/mer.16-00242 Google Scholar
- 2L. A. Robertson, Antonie Van Leeuwenhoek 2023, 116, 919.
- 3A. Maier, S. Steidl, V. Christlein, J. Hornegger, Medical Imaging Systems: An Introductory Guide, Springer, Berlin/New York 2018.
10.1007/978-3-319-96520-8 Google Scholar
- 4Y. Park, C. Depeursinge, G. Popescu, Nat. Photonics 2018, 12, 578.
- 5J. A. Davis, D. E. McNamara, D. M. Cottrell, J. Campos, Opt. Lett. 2000, 25, 99.
- 6A. Jesacher, S. Furhapter, S. Bernet, M. Ritsch-Marte, J. Opt. Soc. Am. A 2006, 23, 1400.
- 7X. Qiu, F. Li, W. Zhang, Z. Zhu, L. Chen, Optica 2018, 5, 208.
- 8C. Maurer, A. Jesacher, S. Bernet, M. Ritsch-Marte, Laser Photon. Rev. 2011, 5, 81.
- 9Y. Peng, J. Zhang, X. Zhou, C. Chen, T. Guo, Q. Yan, Y. Zhang, C. Wu, Laser Photon. Rev. 2024, 18, 2300731.
- 10M. Pan, Y. Fu, M. Zheng, H. Chen, Y. Zang, H. Duan, Q. Li, M. Qiu, Y. Hu, Light: Sci. Appl. 2022, 11, 195.
- 11A. Arbabi, A. Faraon, Nat. Photonics 2022, 17, 16.
- 12T. Li, C. Chen, X. Xiao, J. Chen, S. Hu, S. Zhu, Photonics Insights 2023, 2, R01.
10.3788/PI.2023.R01 Google Scholar
- 13Z. Liu, D. Wang, H. Gao, M. Li, H. Zhou, C. Zhang, Adv. Photonics 2023, 5, 034001.
- 14M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso, Science 2016, 352, 1190.
- 15T. Badloe, I. Kim, Y. Kim, J. Kim, J. Rho, Adv. Sci. 2021, 8, 2102646.
- 16H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, J. Li, Nano Lett. 2018, 18, 4460.
- 17C.-F. Pan, H. Wang, H. Wang, P. S. Nair, Q. Ruan, S. Wredh, Y. Ke, J. Y. E. Chan, W. Zhang, C.-W. Qiu, J. K. W. Yang, Sci. Adv. 2023, 9, eadj9262.
- 18X. Xiao, Y. Zhao, X. Ye, C. Chen, X. Lu, Y. Rong, J. Deng, G. Li, S. Zhu, T. Li, Light: Sci. Appl. 2022, 11, 323.
- 19S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, D. P. Tsai, Nat. Nanotechnol. 2018, 13, 227.
- 20W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso, Nat. Nanotechnol. 2018, 13, 220.
- 21Y. Wang, Q. Chen, W. Yang, Z. Ji, L. Jin, X. Ma, Q. Song, A. Boltasseva, J. Han, V. M. Shalaev, S. Xiao, Nat. Commun. 2021, 12, 5560.
- 22E. Lassalle, T. W. W. Mass, D. Eschimese, A. V. Baranikov, E. Khaidarov, S. Li, R. Paniagua-Dominguez, A. I. Kuznetsov, ACS Photonics 2021, 8, 1457.
- 23M. Y. Shalaginov, S. An, F. Yang, P. Su, D. Lyzwa, A. M. Agarwal, H. Zhang, J. Hu, T. Gu, Nano Lett. 2020, 20, 7429.
- 24A. Martins, K. Li, J. Li, H. Liang, D. Conteduca, B. H. V. Borges, T. F. Krauss, E. R. Martins, ACS Photonics 2020, 7, 2073.
- 25X. Luo, F. Zhang, M. Pu, Y. Guo, X. Li, X. Ma, Nanophotonics 2021, 11, 1.
- 26X. Ye, X. Qian, Y. Chen, R. Yuan, X. Xiao, C. Chen, W. Hu, C. Huang, S. Zhu, T. Li, Adv. Photonics 2022, 4, 046006.
- 27F. Zhao, R. Lu, X. Chen, C. Jin, S. Chen, Z. Shen, C. Zhang, Y. Yang, Laser Photon. Rev. 2021, 15, 2100097.
- 28M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, D. Rousso, F. Capasso, Nano Lett. 2016, 16, 4595.
- 29C. Jin, J. Zhang, C. Guo, Nanophotonics 2019, 8, 451.
- 30Q. Guo, Z. Shi, Y.-W. Huang, E. Alexander, C.-W. Qiu, F. Capasso, T. Zickler, Proc. Natl. Acad. Sci. 2019, 116, 22959.
- 31J. Zhou, H. Qian, C.-F. Chen, J. Zhao, G. Li, Q. Wu, H. Luo, S. Wen, Z. Liu, Proc. Natl. Acad. Sci. 2019, 116, 11137.
- 32Y. Wang, Q. Yang, S. He, R. Wang, H. Luo, ACS Photonics 2022, 10, 2201.
- 33A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alù, N. Engheta, Science 2014, 343, 160.
- 34J. Zhou, H. Qian, J. Zhao, M. Tang, Q. Wu, M. Lei, H. Luo, S. Wen, S. Chen, Z. Liu, Natl. Sci. Rev. 2021, 8, nwaa176.
- 35Y. Intaravanne, M. A. Ansari, H. Ahmed, N. Bileckaja, H. Yin, X. Chen, ACS Photonics 2023, 10, 544.
- 36R. Wang, S. He, S. Chen, W. Shu, S. Wen, H. Luo, iScience 2022, 25, 104532.
- 37A. Komar, R. A. Aoni, L. Xu, M. Rahmani, A. E. Miroshnichenko, D. N. Neshev, ACS Photonics 2021, 8, 864.
- 38A. Cordaro, H. Kwon, D. Sounas, A. F. Koenderink, A. Alu, A. Polman, Nano Lett. 2019, 19, 8418.
- 39H. Kwon, A. Cordaro, D. Sounas, A. Polman, A. Alù, ACS Photonics 2020, 7, 1799.
- 40Y. Liu, M. Huang, Q. Chen, D. Zhang, Nat. Commun. 2022, 13, 7944.
- 41C. Zhou, Y. Chen, Y. Li, J. Li, R. Zhao, C. Tao, C. Liu, Y. Bai, X. Li, Y. Wang, L. Huang, Adv. Funct. Mater. 2024, 34, 2313777.
- 42Y. Zhou, H. Zheng, I. I. Kravchenko, J. Valentine, Nat. Photonics 2020, 14, 316.
- 43D. Pan, L. Wan, M. Ouyang, W. Zhang, A. A. Potapov, W. Liu, Z. Liang, T. Feng, Z. Li, Photonics Res. 2021, 9, 1758.
- 44X. Zhang, Y. Zhou, H. Zheng, A. E. Linares, F. C. Ugwu, D. Li, H. B. Sun, B. Bai, J. G. Valentine, Nano Lett. 2021, 21, 8715.
- 45H. Yang, Z. Xie, H. He, Q. Zhang, J. Li, Y. Zhang, X. Yuan, Opt. Lett. 2021, 46, 3741.
- 46M. Cotrufo, S. B. Sulejman, L. Wesemann, M. A. Rahman, M. Bhaskaran, A. Roberts, A. Alù, Nat. Commun. 2024, 15, 4483.
- 47P. Huo, C. Zhang, W. Zhu, M. Liu, S. Zhang, S. Zhang, L. Chen, H. J. Lezec, A. Agrawal, Y. Lu, T. Xu, Nano Lett. 2020, 20, 2791.
- 48X. Liang, Z. Zhou, Z. Li, J. Li, C. Peng, H. Cui, K. Wei, Z. He, S. Yu, G. Zheng, Adv. Mater. 2023, 35, 2301505.
- 49Y. Kim, G. Y. Lee, J. Sung, J. Jang, B. Lee, Adv. Funct. Mater. 2021, 32, 2106050.
- 50Y. Qiu, S. Tang, T. Cai, H. Xu, F. Ding, Front. Optoelectron 2021, 14, 134.
- 51A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, Nat. Nanotechnol. 2015, 10, 937.
- 52J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, F. Capasso, Phys. Rev. Lett. 2017, 118, 113901.
- 53Z. Yu, M. Li, Z. Xing, H. Gao, Z. Liu, S. Pu, H. Mao, H. Cai, Q. Ma, W. Ren, J. Zhu, C. Zhang, Opto-Electron. Sci. 2024, 3, 240016.
- 54F. Ding, B. Chang, Q. Wei, L. Huang, X. Guan, S. I. Bozhevolnyi, Laser Photon. Rev. 2020, 14, 2000116
- 55T. Xiao, H. Yang, Q. Yang, D. Xu, R. Wang, S. Chen, H. Luo, Opt. Lett. 2022, 47, 925.
- 56Y. Zhang, P. Lin, P. Huo, M. Liu, Y. Ren, S. Zhang, Q. Zhou, Y. Wang, Y.-q. Lu, T. Xu, Nano Lett. 2023, 23, 2991.
- 57T. Badloe, Y. Kim, J. Kim, H. Park, A. Barulin, Y. N. Diep, H. Cho, W.-S. Kim, Y.-K. Kim, I. Kim, J. Rho, ACS Nano 2023, 17, 14678.
- 58J. W. Goodman. Introduction to Fourier Optics, Roberts and Company Publishers, Greenwood Village, USA 2005.
- 59C. Zhang, S. Divitt, Q. Fan, W. Zhu, A. Agrawal, Y. Lu, T. Xu, H. J. Lezec, Light: Sci. Appl. 2020, 9, 55.
- 60C. Zhang, L. Chen, Z. Lin, J. Song, D. Wang, M. Li, O. Koksal, Z. Wang, G. Spektor, D. Carlson, H. J. Lezec, W. Zhu, S. Papp, A. Agrawal, Light: Sci. Appl. 2024, 13, 23.
- 61R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, F. Capasso, Proc. Natl. Acad. Sci. 2016, 113, 10473.
- 62A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, A. Majumdar, ACS Photonics 2016, 3, 209.
- 63B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, D. P. Tsai, Nano Lett. 2017, 17, 6345.
- 64Z. Zhou, Y. Zhang, Y. Xie, T. Huang, Z. Li, P. Chen, Y.-Q. Lu, S. Yu, S. Zhang, G. Zheng, Light: Sci. Appl. 2024, 13, 242.
- 65X. Liang, D. Zhu, Q. Dai, Y. Xie, Z. Zhou, C. Peng, Z. Li, P. Chen, Y.-Q. Lu, S. Yu, G. Zheng, Laser Photon. Rev. 2024, 18, 2400032.
- 66F. Ding, C. Meng, S. I. Bozhevolnyi, Photonics Insights 2024, 3, R07.
10.3788/PI.2024.R07 Google Scholar