Subwavelength Photorefractive Grating in a Thin-Film Lithium Niobate Microcavity
Jiankun Hou
State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorJiefu Zhu
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorRuixin Ma
State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorBoyi Xue
State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorYicheng Zhu
State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorJintian Lin
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800 China
Search for more papers by this authorXiaoshun Jiang
National Laboratory of Solid-State Microstructures, College of Engineering and Applied Science and School of Physics, Nanjing University, Nanjing, 210093 China
Search for more papers by this authorXianfeng Chen
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorYa Cheng
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800 China
Search for more papers by this authorCorresponding Author
Li Ge
Department of Physics and Astronomy, College of Staten Island, the City University of New York, New York, NY, 10314 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yuanlin Zheng
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wenjie Wan
State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 China
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorJiankun Hou
State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorJiefu Zhu
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorRuixin Ma
State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorBoyi Xue
State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorYicheng Zhu
State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorJintian Lin
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800 China
Search for more papers by this authorXiaoshun Jiang
National Laboratory of Solid-State Microstructures, College of Engineering and Applied Science and School of Physics, Nanjing University, Nanjing, 210093 China
Search for more papers by this authorXianfeng Chen
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorYa Cheng
State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800 China
Search for more papers by this authorCorresponding Author
Li Ge
Department of Physics and Astronomy, College of Staten Island, the City University of New York, New York, NY, 10314 USA
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Yuanlin Zheng
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wenjie Wan
State Key Laboratory of Advanced Optical Communication Systems and Networks, University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240 China
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240 China
E-mail: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
Subwavelength gratings play a fundamental and pivotal role in numerous science and applications for wave manipulation, exhibiting distinctive features such as filtering, phase manipulation, and anti-reflection. However, conventional fabrication methods for ultrasmall periodic structures are constrained by the fundamental optical diffraction limit, making it challenging to produce subwavelength gratings for optics. Here, a novel technique is demonstrated to build a reconfigurable subwavelength photorefractive grating (SPG) in a thin-film lithium niobate on the platform of an optical microcavity. Such SPGs are optically induced through the photorefractive effect and the subwavelength features originate from the spatial phase modulations of the pump's standing wave. The resulting SPGs lead to the mode splitting of two counter-propagating modes inside the microcavity, exhibiting an Electromagnetically Induced Transparency (EIT)-like transmission spectrum. Moreover, the unique subwavelength characteristic of SPGs enables first-order quasi-phase-matching for backward second-harmonic generation, a long-standing problem in nonlinear optics. Also, free-space-to-chip vertical nonlinear frequency conversion can be achieved in a similar manner. These results provide a flexible approach toward fabricating subwavelength gratings, which holds significant potential in various applications such as nonlinear frequency conversion, optical communication, sensing, and quantum technologies.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support this article are available from the corresponding author upon reasonable request
Supporting Information
Filename | Description |
---|---|
lpor202301351-sup-0001-SuppMat.pdf888.8 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N. Bonod, J. Neauport, Adv. Opt. Photon. 2016, 8, 156.
- 2T. K. Gaylord, M. G. Moharam, Proc. IEEE 1985, 73, 894.
- 3C. Palmer, Diffraction Grating Handbook, Newport Corporation, New York 2005.
- 4M. Notomi, Phys. Rev. B 2000, 62, 10696.
- 5V. Berger, Phys. Rev. Lett. 1998, 81, 4136.
- 6D. Oser, D. Pérez-Galacho, X. L.e Roux, S. Tanzilli, L. Vivien, L. Labonté, É. Cassan, C. Alonso-Ramoset, Opt. Lett. 2020, 45, 5784.
- 7M. Navarro-Cía, M. Beruete, M. Sorolla, I. Campillo, Opt. Express 2008, 16, 560.
- 8J. Luque-González, A. Sánchez-Postigo, A. Hadij-ElHouati, A. Ortega-Moñux, J. Wangüemert-Pérez, J. Schmid, P. Cheben, Í. Molina-Fernández, R. Halir, Nanophotonics 2021, 10, 2765.
- 9T. He, Z. Zhang, J. Zhu, Y. Shi, Z. Li, H. Wei, Z. Wei, Y. Li, Z. Wang, C. W. Qiu, X. Cheng, Light Sci. Appl. 2023, 12, 229.
- 10J. Huang, L. Jiang, X. Li, S. Zhou, S. Gao, P. Li, L. Huang, K. Wang, L. Qu, ACS Appl. Mater. Interfaces 2021, 13, 43622.
- 11L. E. Myers, W. R. Bosenberg, IEEE J. Quantum Electron. 1997, 33, 1663.
- 12P. Chen, C. Wang, D. Wei, Y. Hu, X. Xu, J. Li, D. Wu, J. Ma, S. Ji, L. Zhang, L. Xu, T. Wang, C. Xu, J. Chu, S. Zhu, M. Xiao, Y. Zhang, Light Sci. Appl. 2021, 10, 146.
- 13E. Nitiss, J. Hu, A. Stroganov, C. S. Brès, Nat. Photon. 2022, 16, 134.
- 14X. Lu, G. Moille, A. Rao, D. A. Westly, K. Srinivasan, Nat. Photon. 2021, 15, 131.
- 15O. Yakar, E. Nitiss, J. Hu, C. S. Brès, Phys. Rev. Lett. 2023, 131, 143802.
- 16J. Hu, E. Nitiss, J. He, J. Liu, O. Yakar, W. Weng, T. J. Kippenberg, C. S. Brès, Sci. Adv. 2022, 8, 8252.
10.1126/sciadv.add8252 Google Scholar
- 17Y. Yan, Y. Yuan, B. Wang, V. Gopalan, N. C. Giebink, Nat. Commun. 2017, 8, 14269.
- 18X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, Y. Sheng, Opt. Lett. 2016, 41, 2410.
- 19Y. Zhang, H. Li, T. Ding, Y. Huang, L. Liang, X. Sun, Y. Tang, J. Wang, S. Liu, Y. Zheng, X. Chen, Optica 2023, 10, 688.
- 20J. Lu, M. Li, C. L. Zou, A. Al Sayem, H. X. Tang, Optica 2020, 7, 1654.
- 21D. Sun, Y. Zhang, D. Wang, W. Song, X. Liu, J. Pang, D. Geng, Y. Sang, H. Liu, Light Sci. Appl. 2020, 9, 197.
- 22C. Canalias, V. Pasiskevicius, Nature Photon 2007, 1, 459.
- 23M. Shao, F. Liang, H. Yu, H. Zhang, Light Sci. Appl. 2022, 11, 31.
- 24P. Mutter, K. M. Mølster, A. Zukauskas, V. Pasiskevicius, C. Canalias, Opt. Lett. 2023, 48, 1534.
- 25P. S. Kuo, D. V. Reddy, V. Verma, S. W. Nam, A. Zukauskas, C. Canalias, Optica Quantum. 2023, 1, 43.
10.1364/OPTICAQ.500021 Google Scholar
- 26X. Xu, T. Wang, P. Chen, C. Zhou, J. Ma, D. Wei, H. Wang, B. Niu, X. Fang, D. Wu, S. Zhu, M. Gu, M. Xiao, Y. Zhang, Nature 2022, 609, 496.
- 27T. Stolt, J. Kim, S. Héron, A. Vesala, Y. Yang, J. Mun, M. Kim, M. J. Huttunen, R. Czaplicki, M. Kauranen, J. Rho, P. Genevet, Phys. Rev. Lett. 2021, 126, 033901.
- 28D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, M. Xiao, Nature Photon. 2018, 12, 596.
- 29T. R. Volk, V. I. Pryalkin, N. M. Rubinina, Opt. Lett. 1990, 15, 996.
- 30L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, Science 1998, 282, 1089.
- 31J. Feinberg, K. R. MacDonald, in Photorefractive Materials and Their Applications II, Springer, Berlin, New York 2008.
- 32F. Laporte, J. Dambre, P. Bienstman, Sci. Rep. 2021, 11, 2701.
- 33J. Hou, J. Lin, J. Zhu, G. Zhao, Y. Chen, F. Zhang, Y. Zheng, X. Chen, Y. Cheng, L. Ge, W. Wan, PhotoniX 2022, 3, 22.
- 34J. Zhu, X. Sun, T. Ding, Y. Tang, S. Liu, Y. Zheng, X. Chen, J. Opt. Soc. Am. B 2023, 40, D44.
- 35Y. Xu, A. Al Sayem, C. L. Zou, L. Fan, R. Cheng, H. X. Tang, Opt. Lett. 2021, 46, 432.
- 36J. Liu, T. Stace, J. Dai, K. Xu, A. Luiten, F. Baynes, Phys. Rev. Lett. 2021, 127, 033902.
- 37F. Zhang, Y. Feng, X. Chen, L. Ge, W. Wan, Phys. Rev. Lett. 2020, 124, 053901.
- 38T. Kippenberg, Nature Photon. 2010, 4, 9.
- 39Y. Zheng, J. Yang, Z. Shen, J. Cao, X. Chen, X. Liang, W. Wan, Light Sci. Appl. 2016, 5, e16072.
- 40S. Q. Fang, X. H. Zhang, Y. J. Qiao, J. Alloys Compd. 2007, 438, 317.
- 41H. Jiang, R. Luo, H. Liang, X. Chen, Y. Chen, Q. Lin, Opt. Lett. 2017, 42, 3267.
- 42Y. H. Yang, X. B. Xu, J. Q. Wang, M. Zhang, M. Li, Z. X. Zhu, Z. B. Wang, C. H. Dong, W. Fang, H. Yu, G. C. Guo, C. L. Zou, Phys. Rev. Appl. 2023, 19, 034087.
- 43Z. Zhang, H. Zhao, D. G. Pires, X. Qiao, Z. Gao, J. M. Jornet, S. Longhi, N. M. Litchinitser, L. Feng, Light Sci. Appl. 2020, 9, 179.
- 44J. Yang, L. Yuan, T. Qin, F. Zhang, Y. Chen, X. Jiang, X. Chen, S. Fan, W. Wan, Optica 2021, 8, 1448.
- 45L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, B. Witzigmann, H. E. Beere, D. A. Ritchie, Nature Photon. 2009, 3, 46.
- 46Z. Chai, X. Hu, F. Wang, X. Niu, J. Xie, Q. Gong, Adv. Opt. Mater. 2017, 5, 1600665.
- 47Y. Chen, F. Zhang, T. Qin, G. Zhao, J. Hou, X. Chen, L. Ge, W. Wan, Optica 2022, 9, 971.
- 48C. Wang, W. R. Sweeney, A. D. Stone, L. Yang, Science 2021, 373, 1261.