Broadband Up-Conversion Mid-Infrared Time-Stretch Spectroscopy
Zhaoyang Wen
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorBo Peng
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorCorresponding Author
Ming Yan
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120 China
Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064 China
E-mail: [email protected], [email protected]
Search for more papers by this authorTingting Zheng
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorQi Wen
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorTingting Liu
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120 China
Search for more papers by this authorXinyi Ren
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120 China
Search for more papers by this authorKun Huang
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120 China
Search for more papers by this authorCorresponding Author
Heping Zeng
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120 China
Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064 China
Jinan Institute of Quantum Technology, Jinan, Shandong, 250101 China
E-mail: [email protected], [email protected]
Search for more papers by this authorZhaoyang Wen
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorBo Peng
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorCorresponding Author
Ming Yan
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120 China
Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064 China
E-mail: [email protected], [email protected]
Search for more papers by this authorTingting Zheng
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorQi Wen
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorTingting Liu
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120 China
Search for more papers by this authorXinyi Ren
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120 China
Search for more papers by this authorKun Huang
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120 China
Search for more papers by this authorCorresponding Author
Heping Zeng
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062 China
Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120 China
Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064 China
Jinan Institute of Quantum Technology, Jinan, Shandong, 250101 China
E-mail: [email protected], [email protected]
Search for more papers by this authorAbstract
Time-stretch spectroscopy is a powerful tool for studying transient and nonrepetitive physical events. Its extension to the fundamental molecular fingerprint region is promising for chemical and biological research but encounters difficulties in mid-infrared photodetection and strong attenuation of aqueous environments. Here, mid-infrared time-stretch spectroscopy via coincidently-pumped nonlinear frequency conversion for efficient mid-infrared generation and detection is demonstrated. Broadband (≈200 cm−1) mid-infrared spectra at 77.5 Mspectra s−1 with high signal-to-noise ratio are recorded. The single-shot signal-to-noise ratio (SNR) measured within 2 ns exceeds 200. The method reveals fast spectral dynamics in a laser-induced liquid evaporation process with a temporal resolution of 12.9 ns. Furthermore, probing transient spectra during evaporation opens up a new opportunity for interrogating chemicals inside or behind a thick water layer. Integrating high speed, broad bandwidth, high SNR, and the potential for operating under an aqueous environment, this method will benefit many applications including molecular dynamics, chemical reactions, and biological diagnostics.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, B. Jalali, Nat. Photonics 2017, 11, 341.
- 2G. Thomas, S. Lynn, K. K. Anahita, H. P. Henry, H. Ammar, M. David J, M. Roberto, G. Goery, D. John M, P. Alessia, K. Michael, W. Benjamin, Adv. Phys.: X 2022, 7, 2067487.
- 3J. G. Mance, B. M. La Lone, J. A. Madajian, W. D. Turley, L. R. Veeser, Opt. Express 2020, 28, 29004.
- 4F. Saltarelli, V. Kumar, D. Viola, F. Crisafi, F. Preda, G. Cerullo, D. Polli, Opt Express 2016, 24, 21264.
- 5F. Kurtz, C. Ropers, G. Herink, Nat. Photonics 2020, 14, 9.
- 6H. Liang, X. Zhao, B. Liu, J. Yu, Y. Liu, R. He, J. He, H. Li, Z. Wang, Nanophotonics 2019, 9, 1921.
- 7J. M. Dudley, F. Dias, M. Erkintalo, G. Genty, Nat. Photonics 2014, 8, 755.
- 8G. Herink, B. Jalali, C. Ropers, D. R. Solli, Nat. Photonics 2016, 10, 321.
- 9B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, J. M. Dudley, Sci. Rep. 2012, 2, 882.
- 10L. Cheng, K. Hirofumi, W. Yi, L. Ming, I. Akihiro, Y. Atsushi, M. Hideharu, I. Takuro, N. Nao, S. Takeaki, Y. Makoto, Y. Yutaka, D. C. Dino, O. Yasuyuki, G. Keisuke, Nat. Protoc. 2018, 13, 1603.
- 11D. J. Lum, Nat. Photonics 2020, 14, 2.
- 12R. Eléonore, S. Christophe, E. Clément, S. Bernd, G. Christopher, J. Bahram, B. Serge, Light: Sci. Appl. 2020, 11, 14.
- 13U. Mayor, C. M. Johnson, V. Daggett, A. R. Fersht, Proc. Natl. Acad. Sci. USA 2000, 97, 13518.
- 14M. Fioroni, M. D. Diaz, K. Burger, S. Berger, J. Am. Chem. Soc. 2002, 124, 7737.
- 15L. S. Paloma, S. W. Jonathan, G. C. Daniel, S. B. Andrei, E. Julien, E. S. Jessica, J. P. Thomas, P. M. Andrew, R. B. Martin, Adv. Sci. 2018, 5, 1700989.
10.1002/advs.201700989 Google Scholar
- 16B. Süss, F. Ringleb, J. Heberle, Rev. Sci. Instrum. 2016, 87, 063113.
- 17M. Tamamitsu, Y. Sakaki, T. Nakamura, G. K. Podagatlapalli, T. Ideguchi, K. Goda, Vib. Spectrosc. 2016, 91, 163.
- 18C. Ian, N. Nathan, S. William, Optica 2016, 3, 414.
- 19K. Jessica L, M. Markus, A. Pitt, H. Andreas, G. Markus, J. Pierre, F. Jérôme, K. Tilman, Anal. Chem. 2018, 90, 10494.
- 20C. Bao, Z. Yuan, L. Wu, M. G. Suh, H. Wang, Q. Li, K. J. Vahala, Nat. Commun. 2021, 12, 6573.
- 21A. L. David, J. C. Matthew, M. Carl, T. H. Adam, C. M. Garrett, F. Augustine, B. R. Gregory, 2022. (preprint) arXiv:2212.01407, v1.
- 22M. A. Abbas, Q. Pan, J. Mandon, S. M. Cristescu, F. J. M. Harren, A. Khodabakhsh, Sci. Rep. 2019, 9, 17247.
- 23A. Shams-Ansari, M. Yu, Z. Chen, C. Reimer, M. Zhang, N. Picqué, M. Lončar, Commun. Phys. 2022, 5, 88.
- 24M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, A. L. Gaeta, Nat. Commun. 2018, 9, 1869.
- 25A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, M. Lipson, Sci. Adv. 2018, 4, e1701858.
- 26M. Yu, Y. Okawachi, A. G. Griffith, M. Lipson, A. L. Gaeta, Opt. Lett. 2019, 44, 4259.
- 27P. Luo, Opt. Lett. 2020, 45, 6791.
- 28T. Voumard, J. Darvill, T. Wildi, M. Ludwig, C. Mohr, I. Hartl, T. Herr, Opt. Lett. 2022, 47, 1379.
- 29N. Hoghooghi, R. K. Cole, G. B. Rieker, Appl. Phys. B 2021, 127, 1.
10.1007/s00340-020-07552-y Google Scholar
- 30A. Akifumi, M. Kaoru, APL Photonics 2017, 2, 041301.
10.1063/1.4976730 Google Scholar
- 31M. Liu, R. M. Gray, L. Costa, C. R. Markus, A. Roy, A. Marandi, Nat. Commun. 2023, 14, 1044.
- 32A. Kawai, K. Hashimoto, T. Dougakiuchi, V. R. Badarla, T. Imamura, T. Edamura, T. Ideguchi, Commun. Phys. 2020, 3, 658.
10.1038/s42005-020-00420-3 Google Scholar
- 33K. Hashimoto, T. Nakamura, T. Kageyama, V. R. Badarla, H. Shimada, R. Horisaki, T. Ideguchi, Light: Sci. Appl. 2023, 12, 48.
- 34W. Kang, B. Li, Y. Liang, Q. Hao, M. Yan, K. Huang, H. Zeng, IEEE Photonics Technol. Lett. 2020, 32, 184.
- 35J. Chen, D. L. Rempel, M. L. Gross, J. Am. Chem. Soc. 2010, 132, 15502.
- 36A. Takamizawa, S. Kajimoto, J. Hobley, K. Hatanaka, K. Ohta, H. Fukumura, Phys. Chem. Chem. Phys.: PCCP 2003, 5, 888.
- 37P. Ioachim, H. Marinus, T. Michael, S. Wolfgang, H. Syed A, H. Christina, F. Kilian, P. Markus, V. Lenard, F. Ernst, A. Tatiana, K. V. Kepesidis, A. Alexander, K. Nicholas, P. Vladimir, P. Oleg, F. Frank, A. Abdallah, Z. Mihaela, K. Ferenc, Nature 2020, 577, 52.
- 38Z. E. Loparo, E. Ninnemann, K. Thurmond, A. Laich, A. Azim, A. Lyakh, S. S. Vasu, Opt. Lett. 2019, 44, 1435.
- 39T. W. Neely, G. L. Nugent, F. Adler, S. A. Diddams, Opt. Lett. 2012, 37, 4332.
- 40K. Huang, Y. Wang, J. Fang, W. Kang, Y. Sun, Y. Liang, Q. Hao, M. Yan, H. Zeng, Photonics Res. 2021, 9, 259.
- 41X. Wang, J. Peng, K. Huang, M. Yan, H. Zeng, Opt. Express 2019, 27, 28808.
- 42K. Hashimoto, R. B. Venkata, I. Takuro, Laser Photonics Rev. 2021, 15, 2000374.
- 43T. Tsai, G. Wysocki, Appl. Phys. B 2010, 100, 243.
- 44A. Lyakh, J. R. Barron, I. Dunayevskiy, R. Go, C. Patel, N. Kumar, Appl. Phys. Lett. 2015, 106, 141101.
- 45J. A. Agner, S. Albert, P. Allmendinger, U. Hollenstein, A. Hugi, P. Jouy, K. Keppler, M. Mangold, F. Merkt, M. Quack, Mol. Phys. 2022, 120, 15.
10.1080/00268976.2022.2094297 Google Scholar
- 46J. L. Klocke, M. Mangold, P. Allmendinger, A. Hugi, M. Geiser, P. Jouy, J. Faist, T. Kottke, Anal. Chem. 2018, 90, 10494.
- 47L. Muriel, B. Olivier, C. Jean, V. Bastien, A. Pitt, H. Jakob, E. Florian, H. Andreas, M. Markus, J. Quant. Spectrosc. Radiat. Transfer 2022, 287, 108239.
10.1016/j.jqsrt.2022.108239 Google Scholar