The dynamic microenvironment associated with metastatic bone disease: Current concepts
Rahul Bhale MD
Department of Orthopaedic Surgery, University of California, Sacramento, California, USA
Search for more papers by this authorParamita Ghosh PhD
Department of Orthopaedic Surgery, University of California, Sacramento, California, USA
Search for more papers by this authorRaminta Theriault MD
Department of Orthopaedic Surgery, University of California, Sacramento, California, USA
Search for more papers by this authorSteven Thorpe MD
Department of Orthopaedic Surgery, University of California, Sacramento, California, USA
Search for more papers by this authorGabriela Loots PhD
Department of Orthopaedic Surgery, University of California, Sacramento, California, USA
Search for more papers by this authorCorresponding Author
R. Lor Randall MD
Department of Orthopaedic Surgery, University of California, Sacramento, California, USA
Correspondence R. Lor Randall, MD, Department of Orthopaedic Surgery, University of California, Davis 4860 Y Street #1700, Sacramento, CA 95817, USA.
Email: [email protected]
Search for more papers by this authorRahul Bhale MD
Department of Orthopaedic Surgery, University of California, Sacramento, California, USA
Search for more papers by this authorParamita Ghosh PhD
Department of Orthopaedic Surgery, University of California, Sacramento, California, USA
Search for more papers by this authorRaminta Theriault MD
Department of Orthopaedic Surgery, University of California, Sacramento, California, USA
Search for more papers by this authorSteven Thorpe MD
Department of Orthopaedic Surgery, University of California, Sacramento, California, USA
Search for more papers by this authorGabriela Loots PhD
Department of Orthopaedic Surgery, University of California, Sacramento, California, USA
Search for more papers by this authorCorresponding Author
R. Lor Randall MD
Department of Orthopaedic Surgery, University of California, Sacramento, California, USA
Correspondence R. Lor Randall, MD, Department of Orthopaedic Surgery, University of California, Davis 4860 Y Street #1700, Sacramento, CA 95817, USA.
Email: [email protected]
Search for more papers by this authorAbstract
Patients with bone metastases may experience debilitating pain, neurological conditions, increased risk of pathological fractures, and death. A deeper understanding of the bone microenvironment, the molecular biology of cancer types prone to metastasis, and how bone physiology promotes cancer growth, may help to uncover targeted treatment options. The purpose of this paper is to outline the current concepts relevant to topics including bone remodeling, angiogenesis, and immunomodulation as it relates to metastatic bone disease.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
REFERENCES
- 1Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001; 27(3): 165-176. doi:10.1053/ctrv.2000.0210
- 2Jayarangaiah A, Kemp AK, Theetha Kariyanna P. Bone Metastasis. StatPearls. StatPearls Publishing; 2022 Accessed December 12, 2022. http://www.ncbi.nlm.nih.gov/books/NBK507911/
- 3D'Oronzo S, Coleman R, Brown J, Silvestris F. Metastatic bone disease: pathogenesis and therapeutic options. J Bone Oncol. 2019; 15:100205. doi:10.1016/j.jbo.2018.10.004
- 4Welch DR, Hurst DR. Defining the Hallmarks of metastasis. Cancer Res. 2019; 79(12): 3011-3027. doi:10.1158/0008-5472.CAN-19-0458
- 5Dudjak LA. Cancer metastasis. Semin Oncol Nurs. 1992; 8(1): 40-50. doi:10.1016/0749-2081(92)90007-p
- 6Svensson E, Christiansen CF, Ulrichsen SP, Rørth MR, Sørensen HT. Survival after bone metastasis by primary cancer type: a Danish population-based cohort study. BMJ Open. 2017; 7(9):e016022. doi:10.1136/bmjopen-2017-016022
- 7Tsukamoto S, Kido A, Tanaka Y, et al. Current overview of treatment for metastatic bone disease. Curr Oncol. 2021; 28(5): 3347-3372. doi:10.3390/curroncol28050290
- 8 Cancer.Net | Oncologist-approved cancer information from the American Society of Clinical Oncology. Accessed January 29, 2023. https://www.cancer.net/
- 9Sone T, Tamada T, Jo Y, Miyoshi H, Fukunaga M. Analysis of three-dimensional microarchitecture and degree of mineralization in bone metastases from prostate cancer using synchrotron microcomputed tomography. Bone. 2004; 35(2): 432-438. doi:10.1016/j.bone.2004.05.011
- 10Beltran-Bless A, Murshed M, Zakikhani M, et al. Histomorphometric and microarchitectural analysis of bone in metastatic breast cancer patients. Bone Rep. 2021; 15:101145. doi:10.1016/j.bonr.2021.101145
- 11Hadjidakis DJ, Androulakis II. Bone remodeling. Ann NY Acad Sci. 2006; 1092: 385-396. doi:10.1196/annals.1365.035
- 12Rowe P, Koller A, Sharma S. Physiology, Bone Remodeling. StatPearls. StatPearls Publishing; 2022 Accessed December 13, 2022. http://www.ncbi.nlm.nih.gov/books/NBK499863/
- 13Kenkre J, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018; 55(3): 308-327. doi:10.1177/0004563218759371
- 14Meghji S. Bone remodelling. Br Dent J. 1992; 172(6): 235-242. doi:10.1038/sj.bdj.4807835
- 15Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008; 473(2): 139-146. doi:10.1016/j.abb.2008.03.018
- 16Xiong J, O'Brien CA. Osteocyte RANKL: new insights into the control of bone remodeling. J Bone Miner Res. 2012; 27(3): 499-505. doi:10.1002/jbmr.1547
- 17Infante M, Fabi A, Cognetti F, Gorini S, Caprio M, Fabbri A. RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives. J Exp Clin Cancer Res. 2019; 38(1): 12. doi:10.1186/s13046-018-1001-2
- 18Theoleyre S, Wittrant Y, Tat Sk, Fortun Y, Redini F, Heymann D. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev. 2004; 15(6): 457-475. doi:10.1016/j.cytogfr.2004.06.004
- 19Kubota T, Michigami T, Ozono K. Wnt signaling in bone. Clin Pediatr Endocrinol. 2010; 19(3): 49-56. doi:10.1297/cpe.19.49
- 20Chen HM, Chen FP, Yang KC, Yuan SS. Association of bone metastasis with early-stage breast cancer in women with and without precancer osteoporosis according to osteoporosis therapy status. JAMA Network Open. 2019; 2(3):e190429. doi:10.1001/jamanetworkopen.2019.0429
- 21Body J, Mancini I. Bisphosphonates for cancer patients: why, how, and when? Supp Care Cancer. 2002; 10(5): 399-407. doi:10.1007/s005200100292
- 22Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010; 28(35): 5132-5139. doi:10.1200/JCO.2010.29.7101
- 23Ortiz A, Lin SH. Osteolytic and osteoblastic bone metastases: two extremes of the same spectrum? Recent Results Cancer Res. 2012; 192: 225-233. doi:10.1007/978-3-642-21892-7_11
- 24Andrews RE, Brown JE, Lawson MA, Chantry AD. Myeloma bone disease: the osteoblast in the spotlight. J Clin Med. 2021; 10(17):3973. doi:10.3390/jcm10173973
- 25Coleman RE, Mashiter G, Fogelman I, et al. Osteocalcin: a potential marker of metastatic bone disease and response to treatment. Eur J Cancer Clin Oncol. 1988; 24(7): 1211-1217. doi:10.1016/0277-5379(88)90130-7
- 26Roodman GD. Biology of osteoclast activation in cancer. J Clin Oncol. 2001; 19(15): 3562-3571. doi:10.1200/JCO.2001.19.15.3562
- 27Russo S, Scotto di Carlo F, Gianfrancesco F. The osteoclast traces the route to bone tumors and metastases. Front Cell Dev Biol. 2022; 10:886305. doi:10.3389/fcell.2022.886305
- 28Behzatoglu K. Osteoclasts in tumor biology: metastasis and epithelial-mesenchymal-myeloid transition. Pathol Oncol Res. 2021; 27:609472. doi:10.3389/pore.2021.609472
- 29Otsuka S, Hanibuchi M, Ikuta K, et al. A bone metastasis model with osteolytic and osteoblastic properties of human lung cancer ACC-LC-319/bone2 in natural killer cell-depleted severe combined immunodeficient mice. Oncol Res. 2009; 17(11-12): 581-591. doi:10.3727/096504009789745511
- 30Feeley BT, Liu NQ, Conduah AH, et al. Mixed metastatic lung cancer lesions in bone are inhibited by noggin overexpression and Rank:Fc administration. J Bone Miner Res. 2006; 21(10): 1571-1580. doi:10.1359/jbmr.060706
- 31Yoneda T, Sasaki A, Mundy GR. Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat. 1994; 32(1): 73-84. doi:10.1007/BF00666208
- 32Kozlow W, Guise TA. Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J Mammary Gland Biol Neoplasia. 2005; 10(2): 169-180. doi:10.1007/s10911-005-5399-8
- 33Ottewell PD, Lawson MA. Advances in murine models of breast cancer bone disease. J Cancer Metastatis Treat. 2021; 7: 11. doi:10.20517/2394-4722.2021.14
- 34Vogel T, Wendler J, Frank-Raue K, et al. Bone metastases in medullary thyroid carcinoma: high morbidity and poor prognosis associated with osteolytic morphology. J Clin Endocrinol Metab. 2020; 105(6): e2239-e2246. doi:10.1210/clinem/dgaa077
- 35Orbai P, Gozariu L. Effect of thyroid hormones on osteolysis “in vitro.”. Endocrinologie. 1982; 20(3): 181-185.
- 36Younes MN, Yigitbasi OG, Park YW, et al. Antivascular therapy of human follicular thyroid cancer experimental bone metastasis by blockade of epidermal growth factor receptor and vascular growth factor receptor phosphorylation. Cancer Res. 2005; 65(11): 4716-4727. doi:10.1158/0008-5472.CAN-04-4196
- 37Kawamura R, Suzuki Y, Harada Y, Shimizu T. Atypical presentation of colorectal carcinoma with sole multiple osteolytic bone metastases: a case report. J Med Case Rep. 2021; 15(1): 256. doi:10.1186/s13256-021-02795-5
- 38Zi-Chen G, Jin Q, Yi-Na Z, et al. Colorectal cancer cells promote osteoclastogenesis and bone destruction through regulating EGF/ERK/CCL3 pathway. Biosci Rep. 2020; 40(6):BSR20201175. doi:10.1042/BSR20201175
- 39Mittal VK. Animal models of human colorectal cancer: current status, uses and limitations. World J Gastroenterol. 2015; 21(41): 11854-11861. doi:10.3748/wjg.v21.i41.11854
- 40Pan T, Lin SC, Yu KJ, et al. BIGH3 promotes osteolytic lesions in renal cell carcinoma bone metastasis by inhibiting osteoblast differentiation. Neoplasia. 2018; 20(1): 32-43. doi:10.1016/j.neo.2017.11.002
- 41Simon JP, Bellemans J, Samson I. Metastasis from renal cell carcinoma presenting as osteolysis in total hip arthroplasty: a case report. Acta Orthop Belg. 2008; 74(1): 122-124.
- 42Brodaczewska KK, Szczylik C, Fiedorowicz M, Porta C, Czarnecka AM. Choosing the right cell line for renal cell cancer research. Mol Cancer. 2016; 15(1): 83. doi:10.1186/s12943-016-0565-8
- 43Logothetis CJ, Lin SH. Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer. 2005; 5(1): 21-28. doi:10.1038/nrc1528
- 44Ibrahim T, Flamini E, Mercatali L, Sacanna E, Serra P, Amadori D. Pathogenesis of osteoblastic bone metastases from prostate cancer. Cancer. 2010; 116(6): 1406-1418. doi:10.1002/cncr.24896
- 45Al Nakouzi N, Bawa O, Le Pape A, et al. The IGR-CaP1 xenograft model recapitulates mixed osteolytic/blastic bone lesions observed in metastatic prostate cancer. Neoplasia. 2012; 14(5): 376-IN1. doi:10.1593/neo.12308
- 46Zhou JZ, Riquelme MA, Gao X, Ellies LG, Sun LZ, Jiang JX. Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene. 2015; 34(14): 1831-1842. doi:10.1038/onc.2014.113
- 47Sottnik JL, Dai J, Zhang H, Campbell B, Keller ET. Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer Res. 2015; 75(11): 2151-2158. doi:10.1158/0008-5472.CAN-14-2493
- 48Tang CH, Yamamoto A, Lin YT, Fong YC, Tan TW. Involvement of matrix metalloproteinase-3 in CCL5/CCR5 pathway of chondrosarcomas metastasis. Biochem Pharmacol. 2010; 79(2): 209-217. doi:10.1016/j.bcp.2009.08.006
- 49Delgado-Calle J, Anderson J, Cregor MD, et al. Genetic deletion of Sost or pharmacological inhibition of sclerostin prevent multiple myeloma-induced bone disease without affecting tumor growth. Leukemia. 2017; 31(12): 2686-2694. doi:10.1038/leu.2017.152
- 50Hudson BD, Hum NR, Thomas CB, et al. SOST inhibits prostate cancer invasion. PLoS One. 2015; 10(11):e0142058. doi:10.1371/journal.pone.0142058
- 51Sun L, Zhang Y, Chen G, et al. Targeting SOST using a small-molecule compound retards breast cancer bone metastasis. Mol Cancer. 2022; 21(1): 228. doi:10.1186/s12943-022-01697-4
- 52Gül G, Sendur MAN, Aksoy S, Sever AR, Altundag K. A comprehensive review of denosumab for bone metastasis in patients with solid tumors. Curr Med Res Opin. 2016; 32(1): 133-145. doi:10.1185/03007995.2015.1105795
- 53Body JJ, Bartl R, Burckhardt P, et al. Current use of bisphosphonates in oncology. International Bone and Cancer Study Group. J Clin Oncol. 1998; 16(12): 3890-3899. doi:10.1200/JCO.1998.16.12.3890
- 54Clézardin P, Ebetino FH, Fournier PGJ. Bisphosphonates and cancer-induced bone disease: beyond their antiresorptive activity. Cancer Res. 2005; 65(12): 4971-4974. doi:10.1158/0008-5472.CAN-05-0264
- 55Gralow J, Tripathy D. Managing metastatic bone pain: the role of bisphosphonates. J Pain Symptom Manage. 2007; 33(4): 462-472. doi:10.1016/j.jpainsymman.2007.01.001
- 56Diel IJ, Solomayer EF, Costa SD, et al. Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med. 1998; 339(6): 357-363. doi:10.1056/NEJM199808063390601
- 57Brito AE, Etchebehere E. Radium-223 as an approved modality for treatment of bone metastases. Semin Nucl Med. 2020; 50(2): 177-192. doi:10.1053/j.semnuclmed.2019.11.005
- 58De Luca R, Costa RP, Tripoli V, Murabito A, Cicero G. The clinical efficacy of Radium-223 for bone metastasis in patients with castration-resistant prostate cancer: an Italian clinical experience. Oncology. 2018; 94(3): 161-166. doi:10.1159/000485102
- 59Wenter V, Herlemann A, Fendler WP, et al. Radium-223 for primary bone metastases in patients with hormone-sensitive prostate cancer after radical prostatectomy. Oncotarget. 2017; 8(27): 44131-44140. doi:10.18632/oncotarget.17311
- 60van der Zande K, Oyen WJG, Zwart W, Bergman AM. Radium-223 treatment of patients with metastatic castration resistant prostate cancer: biomarkers for stratification and response evaluation. Cancers. 2021; 13(17):4346. doi:10.3390/cancers13174346
- 61Gallicchio R, Mastrangelo PA, Nardelli A, et al. Radium-223 for the treatment of bone metastases in castration-resistant prostate cancer: when and why. Tumori. 2019; 105(5): 367-377. doi:10.1177/0300891619851376
- 62Parker C, Nilsson S, Heinrich D, et al. Alpha emitter Radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013; 369(3): 213-223. doi:10.1056/NEJMoa1213755
- 63Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006; 2(3): 213-219. doi:10.2147/vhrm.2006.2.3.213
- 64Peng Y, Wu S, Li Y, Crane JL. Type H blood vessels in bone modeling and remodeling. Theranostics. 2020; 10(1): 426-436. doi:10.7150/thno.34126
- 65Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019; 18(1): 157. doi:10.1186/s12943-019-1089-9
- 66Paredes F, Williams HC, San Martin A. Metabolic adaptation in hypoxia and cancer. Cancer Lett. 2021; 502: 133-142. doi:10.1016/j.canlet.2020.12.020
- 67Maiti A, Qi Q, Peng X, Yan L, Takabe K, Hait N. Class I histone deacetylase inhibitor suppresses vasculogenic mimicry by enhancing the expression of tumor suppressor and anti-angiogenesis genes in aggressive human TNBC cells. Int J Oncol. 2019; 55(1): 116-130. doi:10.3892/ijo.2019.4796
- 68Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002; 29(6 suppl 16): 15-18. doi:10.1053/sonc.2002.37263
- 69Eichhorn ME, Kleespies A, Angele MK, Jauch KW, Bruns CJ. Angiogenesis in cancer: molecular mechanisms, clinical impact. Langenbecks Arch Surg. 2007; 392(3): 371-379. doi:10.1007/s00423-007-0150-0
- 70Ghajar CM, Peinado H, Mori H, et al. The perivascular niche regulates breast tumour dormancy. Nature Cell Biol. 2013; 15(7): 807-817. doi:10.1038/ncb2767
- 71Johnson RW, Sowder ME, Giaccia AJ. Hypoxia and bone metastatic disease. Curr Osteoporos Rep. 2017; 15(4): 231-238. doi:10.1007/s11914-017-0378-8
- 72Brahimi-Horn MC, Chiche J, Pouysségur J. Hypoxia and cancer. J Mol Med. 2007; 85(12): 1301-1307. doi:10.1007/s00109-007-0281-3
- 73Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015; 3: 83-92. doi:10.2147/HP.S93413
- 74Ruan K, Song G, Ouyang G. Role of hypoxia in the hallmarks of human cancer. JCB. 2009; 107(6): 1053-1062. doi:10.1002/jcb.22214
- 75Hompland T, Fjeldbo CS, Lyng H. Tumor hypoxia as a barrier in cancer therapy: why levels matter. Cancers. 2021; 13(3):499. doi:10.3390/cancers13030499
- 76Mukherjee A, Bilecz AJ, Lengyel E. The adipocyte microenvironment and cancer. Cancer Metastasis Rev. 2022; 41(3): 575-587. doi:10.1007/s10555-022-10059-x
- 77Cao Y. Adipocyte and lipid metabolism in cancer drug resistance. J Clin Invest. 2019; 129(8): 3006-3017. doi:10.1172/JCI127201
- 78Luo G, He Y, Yu X. Bone marrow adipocyte: an intimate partner with tumor cells in bone metastasis. Front Endocrinol. 2018; 9:339. doi:10.3389/fendo.2018.00339
- 79Dumas JF, Brisson L. Interaction between adipose tissue and cancer cells: role for cancer progression. Cancer Metastasis Rev. 2021; 40(1): 31-46. doi:10.1007/s10555-020-09934-2
- 80Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochimica et Biophysica Acta. 2013; 1831(10): 1533-1541. doi:10.1016/j.bbalip.2013.02.010
- 81Sahoo SS, Lombard JM, Ius Y, et al. Adipose-derived VEGF-mTOR signaling promotes endometrial hyperplasia and cancer: implications for obese women. Mol Cancer Res. 2018; 16(2): 309-321. doi:10.1158/1541-7786.MCR-17-0466
- 82Aird R, Wills J, Roby KF, et al. Hypoxia-driven metabolic reprogramming of adipocytes fuels cancer cell proliferation. Front Endocrinol. 2022; 13:989523. doi:10.3389/fendo.2022.989523
- 83Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P, Vlodavsky I. Extracellular matrix-based cancer targeting. Trends Mol Med. 2021; 27(10): 1000-1013. doi:10.1016/j.molmed.2021.07.009
- 84Henke E, Nandigama R, Ergün S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 2020; 6:160. doi:10.3389/fmolb.2019.00160
- 85Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020; 11(1): 5120. doi:10.1038/s41467-020-18794-x
- 86Popova NV, Jücker M. The functional role of extracellular matrix proteins in cancer. Cancers. 2022; 14(1):238. doi:10.3390/cancers14010238
- 87Kim MS, Ha SE, Wu M, et al. Extracellular matrix biomarkers in colorectal cancer. Int J Mol Sci. 2021; 22(17):9185. doi:10.3390/ijms22179185
- 88Huang J, Zhang L, Wan D, et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 2021; 6(1): 153. doi:10.1038/s41392-021-00544-0
- 89Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis. 2019; 36(3): 171-198. doi:10.1007/s10585-019-09966-1
- 90Kovacheva M, Zepp M, Schraad M, Berger S, Berger MR. Conditional knockdown of osteopontin inhibits breast cancer skeletal metastasis. Int J Mol Sci. 2019; 20(19):4918. doi:10.3390/ijms20194918
- 91Feller L, Kramer B, Lemmer J. A short account of metastatic bone disease. Cancer Cell Int. 2011; 11(1):24. doi:10.1186/1475-2867-11-24
- 92Dong Z, Bonfil RD, Chinni S, et al. Matrix metalloproteinase activity and osteoclasts in experimental prostate cancer bone metastasis tissue. Am J Pathol. 2005; 166(4): 1173-1186. doi:10.1016/S0002-9440(10)62337-1
- 93Elgundi Z, Papanicolaou M, Major G, et al. Cancer metastasis: the role of the extracellular matrix and the heparan sulfate proteoglycan perlecan. Front Oncol. 2020; 9:1482. doi:10.3389/fonc.2019.01482
- 94Hegmans JP, Aerts JG. Immunomodulation in cancer. Curr Opin Pharmacol. 2014; 17: 17-21. doi:10.1016/j.coph.2014.06.007
- 95Locy H, de Mey S, de Mey W, De Ridder M, Thielemans K, Maenhout SK. Immunomodulation of the tumor microenvironment: turn foe into friend. Front Immunol. 2018; 9:2909. doi:10.3389/fimmu.2018.02909
- 96Waldmann TA. Effective cancer therapy through immunomodulation. Annu Rev Med. 2006; 57: 65-81. doi:10.1146/annurev.med.56.082103.104549
- 97Iyer V. Small molecules for immunomodulation in cancer: a review. Anti Cancer Agents Med Chem. 2015; 15(4): 433-452. doi:10.2174/1871520615666141210152128
- 98Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016; 13(5): 273-290. doi:10.1038/nrclinonc.2016.25
- 99Millrud CR, Bergenfelz C, Leandersson K. On the origin of myeloid-derived suppressor cells. Oncotarget. 2017; 8(2): 3649-3665. doi:10.18632/oncotarget.12278
- 100Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009; 9(3): 162-174. doi:10.1038/nri2506
- 101Liu S, Galat V, Galat4 Y, Lee YKA, Wainwright D, Wu J. NK cell-based cancer immunotherapy: from basic biology to clinical development. J Hematol Oncol. 2021; 14(1): 7. doi:10.1186/s13045-020-01014-w
- 102Munari E, Mariotti FR, Quatrini L, et al. PD-1/PD-L1 in cancer: pathophysiological, diagnostic and therapeutic aspects. Int J Mol Sci. 2021; 22(10):5123. doi:10.3390/ijms22105123
- 103Robertson C, Sebastian A, Hinckley A, et al. Extracellular matrix modulates T cell clearance of malignant cells in vitro. Biomaterials. 2022; 282:121378. doi:10.1016/j.biomaterials.2022.121378
- 104Clohisy DR, Mantyh PW. Bone cancer pain. Clin Orthop Relat Res. 2003; 415(415 suppl): S279-S288. doi:10.1097/01.blo.0000093059.96273.56
- 105Shweikeh F, Bukavina L, Saeed K, et al. Brain metastasis in bone and soft tissue cancers: a review of incidence, interventions, and outcomes. Sarcoma. 2014; 2014: 1-19. doi:10.1155/2014/475175
10.1155/2014/475175 Google Scholar
- 106Elefteriou F. Impact of the autonomic nervous system on the skeleton. Physiol Rev. 2018; 98(3): 1083-1112. doi:10.1152/physrev.00014.2017
- 107Sabino MAC, Luger NM, Mach DB, Rogers SD, Schwei MJ, Mantyh PW. Different tumors in bone each give rise to a distinct pattern of skeletal destruction, bone cancer-related pain behaviors and neurochemical changes in the central nervous system. Int J Cancer. 2003; 104(5): 550-558. doi:10.1002/ijc.10999
- 108Nieto-Coronel MT, López-Vásquez AD, Marroquín-Flores D, Ruiz-Cruz S, Martínez-Tláhuel JL, De la Garza-Salazar J. Central nervous system metastasis from osteosarcoma: case report and literature review. Rep Pract Oncol Radiother. 2018; 23(4): 266-269. doi:10.1016/j.rpor.2018.06.003
- 109Mantyh P. Bone cancer pain: causes, consequences, and therapeutic opportunities. Pain. 2013; 154(suppl 1): S54-S62. doi:10.1016/j.pain.2013.07.044
- 110Lin H, Balic M, Zheng S, Datar R, Cote RJ. Disseminated and circulating tumor cells: role in effective cancer management. Crit Rev Oncol Hematol. 2011; 77(1): 1-11. doi:10.1016/j.critrevonc.2010.04.008
- 111Dasgupta A, Lim AR, Ghajar CM. Circulating and disseminated tumor cells: harbingers or initiators of metastasis. Mol Oncol. 2017; 11(1): 40-61. doi:10.1002/1878-0261.12022
- 112Alix-Panabières C, Riethdorf S, Pantel K. Circulating tumor cells and bone marrow micrometastasis. Clin Cancer Res. 2008; 14(16): 5013-5021. doi:10.1158/1078-0432.CCR-07-5125
- 113Schindlbeck C, Andergassen U, Hofmann S, et al. Comparison of circulating tumor cells (CTC) in peripheral blood and disseminated tumor cells in the bone marrow (DTC-BM) of breast cancer patients. J Cancer Res Clin Oncol. 2013; 139(6): 1055-1062. doi:10.1007/s00432-013-1418-0
- 114Vegas H, André T, Bidard FC, et al. Cellules tumorales circulantes et disséminées en oncologie digestive. Bull Cancer. 2012; 99(5): 535-544. doi:10.1684/bdc.2012.1581
- 115Janssen WE, Ribickas A, Meyer LV, Smilee RC. Large-scale Ficoll gradient separations using a commercially available, effectively closed, system. Cytotherapy. 2010; 12(3): 418-424. doi:10.3109/14653240903479663
- 116Ross JS, Slodkowska EA. Circulating and disseminated tumor cells in the management of breast cancer. Am J Clin Path. 2009; 132(2): 237-245. doi:10.1309/AJCPJI7DEOLKCS6F
- 117Rushton AJ, Nteliopoulos G, Shaw JA, Coombes RC. A review of circulating tumour cell enrichment technologies. Cancers. 2021; 13(5):970. doi:10.3390/cancers13050970
- 118Mego M, Gao H, Cohen E, et al. Circulating tumor cells (CTC) are associated with defects in adaptive immunity in patients with inflammatory breast cancer. J Cancer. 2016; 7(9): 1095-1104. doi:10.7150/jca.13098
- 119Zhong X, Zhang H, Zhu Y, et al. Circulating tumor cells in cancer patients: developments and clinical applications for immunotherapy. Mol Cancer. 2020; 19(1): 15. doi:10.1186/s12943-020-1141-9
- 120Agashe R, Kurzrock R. Circulating tumor cells: from the laboratory to the cancer clinic. Cancers. 2020; 12(9):2361. doi:10.3390/cancers12092361
- 121Wang C, Mu Z, Chervoneva I, et al. Longitudinally collected CTCs and CTC-clusters and clinical outcomes of metastatic breast cancer. Breast Cancer Res Treat. 2017; 161(1): 83-94. doi:10.1007/s10549-016-4026-2