Iron oxide nanoparticles as iron micronutrient fertilizer—Opportunities and limitations
Shraddha Shirsat
Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
Search for more papers by this authorCorresponding Author
Suthindhiran K
Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
Correspondence
K. Suthindhiran, Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Katpadi Road, Vellore Dt, Tamil Nadu, 632 014, India.
Email: [email protected], [email protected]
Search for more papers by this authorShraddha Shirsat
Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
Search for more papers by this authorCorresponding Author
Suthindhiran K
Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
Correspondence
K. Suthindhiran, Marine Biotechnology and Bioproducts Laboratory, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Katpadi Road, Vellore Dt, Tamil Nadu, 632 014, India.
Email: [email protected], [email protected]
Search for more papers by this authorThis article has been edited by Xian-Zheng Yuan
Abstract
Iron (Fe) is necessary for plant growth and development. Iron deficiency disrupts major metabolic and cellular activities such as respiration, DNA synthesis, and chlorophyll synthesis. Iron also activates various metabolic pathways and is vital to numerous enzymes. Iron is widely distributed in soil, but plants do not readily absorb it. In addition to neutral pH, Fe also forms insoluble Fe complexes under alkaline conditions. The fundamental cause of Fe chlorosis is an imbalance between the solubility of Fe in soil and the demand for Fe by plants. Various Fe fertilizers, including organic, chelated, and inorganic, are administered to the soil and leaves to treat Fe deficiency and chlorosis. Currently, used Fe fertilizers are expensive, easily adsorb on soil particles, and cause Fe to leach out of the soil with water, thereby diminishing their efficiency. They also need to be applied repeatedly, resulting in an excessive Fe fertilizer concentration in the soil that can cause harm to the plants. The usage of Fe nanofertilizers in agricultural production has expanded to address the disadvantages of existing Fe fertilizers. The advantages of nanosized Fe fertilizers include their physical and chemical characteristics, such as the high surface area to volume ratio that aids in easy absorption by plants’ roots and leaves. Controlled-release iron oxide nanofertilizers supply the regulated release of nutrients in a way that is coordinated with the nutritional needs of the crops. This improves the accumulation of nutrients in the plant, filling in the gap of nutrient deficiency and lowering environmental risks due to leaching. The possibility of iron oxide nanoparticles as Fe micronutrient fertilizers, their uptake and mechanism of action, advantages, and limitations are critically highlighted in this review article.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
REFERENCES
- Abbas, Q., Yousaf, B., Ali, M. U., Munir, M. A. M., El-Naggar, A., Rinklebe, J., & Naushad, M. (2020). Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: A review. Environment International, 138, 105646. https://doi.org/10.1016/j.envint.2020.105646
- Abou Seeda, M. A, El-Sayed, A, A., Yassen, A. A., Abou El-Nour, E. A. A., Zaghloul, S. M., & Mervat, G. M. (2020). Nickel, iron and their diverse role in plants: A review, approaches and future prospective. Middle East Journal of Applied Sciences, 10, 196–219.
- Ahmad, A. R., & Nye, P. H. (1990). Coupled diffusion and oxidation of ferrous iron in soils. I. Kinetics of oxygenation of ferrous iron in soil suspension. Journal of Soil Science, 41(3), 395–409.
- Ahmadi, H., Motesharezadeh, B., & Dadrasnia, A. (2023). Iron chlorosis in fruit stone trees with emphasis on chlorosis correction mechanisms in orchards: A review. Journal of Plant Nutrition, 46(5), 782–800.
- Ahmed, M. A., Shafiei-Masouleh, S. S., Mohsin, R. M., & Salih, Z. K. (2023). Foliar application of iron oxide nanoparticles promotes growth, mineral contents, and medicinal qualities of Solidago virgaurea L. Journal of Soil Science and Plant Nutrition, 23(2), 2610–2624.
- Ajinkya, N., Yu, X., Kaithal, P., Luo, H., Somani, P., & Ramakrishna, S. (2020). Magnetic iron oxide nanoparticle (IONP) synthesis to applications: Present and future. Materials, 13(20), 4644. https://doi.org/10.3390/ma13204644
- Akhtar, N., Ilyas, N., Meraj, T. A., Pour-Aboughadareh, A., Sayyed, R. Z., Mashwani, Z. U. R., & Poczai, P. (2022). Improvement of plant responses by nanobiofertilizer: A step towards sustainable agriculture. Nanomaterials, 12(6), 965. https://doi.org/10.3390/nano12060965
- Alaoui, I., Serbouti, S., Ahmed, H., Mansouri, I., El Kamari, F., Taroq, A., el ghadraoui, O., Ousaaid, D., Squalli, W., & Farah, A. (2022). The mechanisms of absorption and nutrients transport in plants: A review. Tropical Journal of Natural Product Research (TJNPR), 6(1), 8–14.
- Ali, B., Iqbal, J., Sarwar, S., Arif, U., Abbas, M. Z., Farid, U., Afzal, M., Saman, M., Phil, M., & Scholar, M. P. (2021). Implementation of nanofertilizers to bring a revolution in sustainable agriculture. International Research Journal of Modernization in Engineering Technology and Science, 3(9), 1602–1615.
- Ali, S., Mehmood, A., & Khan, N. (2021). Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials, 2021, 6677616.
- An, C., Sun, C., Li, N., Huang, B., Jiang, J., Shen, Y., Wang, C., Zhao, X., Cui, B., Wang, C., Li, X., Zhan, S., Gao, F., Zeng, Z., Cui, H., & Wang, Y. (2022). Nanomaterials and nanotechnology for the delivery of agrochemicals: Strategies towards sustainable agriculture. Journal of Nanobiotechnology, 20(1), 11.
- Apriyani, S., Wahyuni, S., Harsanti, E. S., Zu'Amah, H., Kartikawati, R., & Sutriadi, M. T. (2021). Effect of inorganic fertilizer and farmyard manure to available P, growth and rice yield in rainfed lowland Central Java. IOP Conference Series: Earth and Environmental Science, 648(1), 012190.
10.1088/1755-1315/648/1/012190 Google Scholar
- Arosio, P., Elia, L., & Poli, M. (2017). Ferritin, cellular iron storage and regulation. IUBMB Life, 69(6), 414–422.
- Aryal, J. P., Sapkota, T. B., Krupnik, T. J., Rahut, D. B., Jat, M. L., & Stirling, C. M. (2021). Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia. Environmental Science and Pollution Research, 28(37), 51480–51496.
- Ates, B., Koytepe, S., Ulu, A., Gurses, C., & Thakur, V. K. (2020). Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources. Chemical Reviews, 120(17), 9304–9362.
- Augustine, R., Hasan, A., Primavera, R., Wilson, R. J., Thakor, A. S., & Kevadiya, B. D. (2020). Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Materials Today Communications, 25, 101692. https://doi.org/10.1016/j.mtcomm.2020.101692
- Azim, Z., Singh, N. B., Singh, A., Amist, N., Niharika, Khare, S., Yadav, R. K., Bano, C., & Yadav, V. (2023). A review summarizing uptake, translocation and accumulation of nanoparticles within the plants: Current status and future prospectus. Journal of Plant Biochemistry and Biotechnology, 32(2), 211–224.
- Bahari, A. (2017). Characteristics of Fe3O4, α -Fe2O3, and γ-Fe2O3 nanoparticles as suitable candidates in the field of nanomedicine. Journal of Superconductivity and Novel Magnetism, 30(8), 2165–2174.
- Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.
- Banerjee, K., Pramanik, P., Maity, A., Joshi, D. C., Wani, S. H., & Krishnan, P. (2019). Methods of using nanomaterials to plant systems and their delivery to plants (mode of entry, uptake, translocation, accumulation, biotransformation and barriers). In M. Ghorbanpour & S. H. Wani (Eds.), Advances in phytonanotechnology (pp. 123–152). Academic Press.
10.1016/B978-0-12-815322-2.00005-5 Google Scholar
- Barbez, E., Dünser, K., Gaidora, A., Lendl, T., & Busch, W. (2017). Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 114(24), E4884–E4893.
- Berner, L. T., Massey, R., Jantz, P., Forbes, B. C., Macias-Fauria, M., Myers-Smith, I., Kumpula, T., Gauthier, G., Andreu-Hayles, L., Gaglioti, B. V., Burns, P., Zetterberg, P., D'Arrigo, R., & Goetz, S. J. (2020). Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications, 11(1), 4621. https://doi.org/10.1038/s41467-020-18479-5
- Bhardwaj, A. K., Arya, G., Kumar, R., Hamed, L., Pirasteh-Anosheh, H., Jasrotia, P., Kashyap, P. L., & Singh, G. P. (2022). Switching to nanonutrients for sustaining agroecosystems and environment: The challenges and benefits in moving up from ionic to particle feeding. Journal of Nanobiotechnology, 20(1), 19. https://doi.org/10.1186/s12951-021-01177-9
- Bhat, M. A., Gedik, K., & Gaga, E. O. (2023). Environmental impacts of nanoparticles: Pros, cons, and future prospects. In M. Ozturk, A. Roy, R. A. Bhat, F. V. Sukan, & F. M. Policarpo Tonelli (Eds.), Synthesis of bionanomaterials for biomedical applications (pp. 493–528). Elsevier.
10.1016/B978-0-323-91195-5.00002-7 Google Scholar
- Bisht, N., & Chauhan, P. S. (2020). Excessive and disproportionate use of chemicals cause soil contamination and nutritional stress. In M. L. Larramendy & S. Soloneski (Eds.), Soil contamination—Threats and sustainable solutions (pp. 107–116). IntechOpen.
- Bombin, S., LeFebvre, M., Sherwood, J., Xu, Y., Bao, Y., & Ramonell, K. M. (2015). Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. International Journal of Molecular Sciences, 16(10), 24174–24193.
- Boutchuen, A., Zimmerman, D., Aich, N., Masud, A. M., Arabshahi, A., & Palchoudhury, S. (2019). Increased plant growth with hematite nanoparticle fertilizer drop and determining nanoparticle uptake in plants using multimodal approach. Journal of Nanomaterials, 2019, 6890572.
- Brown, P. H., Zhao, F. J., & Dobermann, A. (2022). What is a plant nutrient? Changing definitions to advance science and innovation in plant nutrition. Plant and Soil, 476(1-2), 11–23.
- Bruulsema, T. (2022). What's the scope of 4R practices for reducing emissions from fertilizer? Crops & Soils, 55(6), 30–36.
10.1002/crso.20233 Google Scholar
- Caixeta, M. B., Araújo, P. S., Rodrigues, C. C., Gonçalves, B. B., Araújo, O. A., Bevilaqua, G. B., Malafaia, G., Silva, L. D., & Rocha, T. L. (2021). Risk assessment of iron oxide nanoparticles in an aquatic ecosystem: A case study on Biomphalaria glabrata. Journal of Hazardous Materials, 401, 123398. https://doi.org/10.1016/j.jhazmat.2020.123398
- Cánovas, C. R., Macías, F., Basallote, M. D., Olías, M., Nieto, J. M., & Pérez-López, R. (2021). Metal(loid) release from sulfide-rich wastes to the environment: The case of the Iberian Pyrite Belt (SW Spain). Current Opinion in Environmental Science & Health, 20, 100240. https://doi.org/10.1016/j.coesh.2021.100240
10.1016/j.coesh.2021.100240 Google Scholar
- Cervantes-Avilés, P., Huang, X., & Keller, A. A. (2021). Dissolution and aggregation of metal oxide nanoparticles in root exudates and soil leachate: Implications for nanoagrochemical application. Environmental Science & Technology, 55(20), 13443–13451.
- Chaitra, A. K. P., Ahuja, R., Sidhu, S. P. K., & Sikka, R. (2021). Importance of nano fertilizers in sustainable agriculture. Environmental Sciences and Ecology: Current Research, 5, 1029.
- Chao, Z. F., & Chao, D. Y. (2022). Similarities and differences in iron homeostasis strategies between graminaceous and nongraminaceous plants. New Phytologist, 236(5), 1655–1660.
- Chaudhary, R. G., Bhusari, G. S., Tiple, A. D., Rai, A. R., Somkuvar, S. R., Potbhare, A. K., Lambat, T. L., Ingle, P. P., & Abdala, A. A. (2019). Metal/metal oxide nanoparticles: Toxicity, applications, and future prospects. Current Pharmaceutical Design, 25(37), 4013–4029.
- Chauhan, N., Sankhyan, N. K., Sharma, R. P., Singh, J., & Gourav (2020). Effect of long-term application of inorganic fertilizers, farm yard manure and lime on wheat (Triticum aestivum L.) productivity, quality and nutrient content in an acid alfisol. Journal of Plant Nutrition, 43(17), 2569–2578.
- Chen, C., & Thompson, A. (2021). The influence of native soil organic matter and minerals on ferrous iron oxidation. Geochimica et Cosmochimica Acta, 292, 254–270.
- Chen, Z., Zhang, Y., Luo, Q., Wang, L., Liu, S., Peng, Y., Wang, H., Shen, L., Li, Q., & Wang, Y. (2019). Maghemite (γ-Fe2O3) nanoparticles enhance dissimilatory ferrihydrite reduction by Geobacter sulfurreducens: Impacts on iron mineralogical change and bacterial interactions. Journal of Environmental Sciences, 78, 193–203.
- Ciavatta, C., Govi, M., Sitti, L., & Gessa, C. (1997). Influence of blood meal organic fertilizer on soil organic matter: A laboratory study. Journal of Plant Nutrition, 20(11), 1573–1591.
- Cieschi, M. T., Polyakov, A. Y., Lebedev, V. A., Volkov, D. S., Pankratov, D. A., Veligzhanin, A. A., Perminova, I. V., & Lucena, J. J. (2019). Eco-friendly iron-humic nanofertilizers synthesis for the prevention of iron chlorosis in soybean (Glycine max) grown in calcareous soil. Frontiers in Plant Science, 10, 413. https://doi.org/10.3389/fpls.2019.00413
- D'Amato, R., De Feudis, M., Troni, E., Gualtieri, S., Soldati, R., Famiani, F., & Businelli, D. (2022). Agronomic potential of two different glass-based materials as novel inorganic slow-release iron fertilizers. Journal of the Science of Food and Agriculture, 102(4), 1660–1664.
- Das, S. K., & Das, S. K. (2015). Acid sulphate soil: Management strategy for soil health and productivity. Popular Kheti, 3(2), 2–7.
- Datta, S. (2019). A brief note on iron deficiency in plants and its correction. A brief Note on Iron Deficiency in Plants and its Correction. https://www.researchgate.net/publication/330133913_A_brief_Note_on_Iron_Deficiency_in_Plants_and_its_Correction#:%7E:text=Iron%20deficiency%20in%20crops%20growing,of%201%20%25%20EDTA%20iron%20solution
- Deng, C., Tang, Q., Yang, Z., Dai, Z., Cheng, C., Xu, Y., Chen, X., Zhang, X., & Su, J. (2022). Effects of iron oxide nanoparticles on phenotype and metabolite changes in hemp clones (Cannabis sativa L.). Frontiers of Environmental Science & Engineering, 16(10), 134. https://doi.org/10.1007/s11783-022-1569-9
- Dey, J. K., Das, S., & Mawlong, L. G. (2018). Nanotechnology and its importance in micronutrient fertilization. International Journal of Current Microbiology and Applied Sciences, 7(5), 2306–2325.
10.20546/ijcmas.2018.705.267 Google Scholar
- Dey, S., Regon, P., Kar, S., & Panda, S. K. (2020). Chelators of iron and their role in plant's iron management. Physiology and Molecular Biology of Plants, 26(8), 1541–1549.
- Dhaliwal, S. S., Naresh, R. K., Mandal, A., Singh, R., & Dhaliwal, M. K. (2019). Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environmental and Sustainability Indicators, 1-2, 100007.
10.1016/j.indic.2019.100007 Google Scholar
- Ditta, A., & Arshad, M. (2016). Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnology Reviews, 5(2), 209–229.
- Draszawka-Bolzan, B. (2017). Effect of pH and soil environment. World News of Natural Sciences, 8, 50–60.
- Eichert, T., Kurtz, A., Steiner, U., & Goldbach, H. E. (2008). Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiologia Plantarum, 134(1), 151–160.
- El-Gioushy, S. F., Ding, Z., Bahloul, A. M. E., Gawish, M. S., Abou El Ghit, H. M., Abdelaziz, A. M. R. A., El-Desouky, H. S., Sami, R., Khojah, E., Hashim, T. A., Kheir, A. M. S., & Zewail, R. M. (2021). Foliar application of nano, chelated, and conventional iron forms enhanced growth, nutritional status, fruiting aspects, and fruit quality of Washington navel orange trees (Citrus sinensis L. Osbeck). Plants, 10(12), 2577. https://doi.org/10.3390/plants10122577
- Elbasuney, S., El-Sayyad, G. S., Attia, M. S., & Abdelaziz, A. M. (2022). Ferric oxide colloid: Towards green nano-fertilizer for tomato plant with enhanced vegetative growth and immune response against fusarium wilt disease. Journal of Inorganic and Organometallic Polymers and Materials, 32(11), 4270–4283.
- Fakharzadeh, S., Hafizi, M., Baghaei, M. A., Etesami, M., Khayamzadeh, M., Kalanaky, S., Akbari, M. E., & Nazaran, M. H. (2020). Using nanochelating technology for biofortification and yield increase in rice. Scientific Reports, 10(1), 4351. https://doi.org/10.1038/s41598-020-60189-x
- Farvardin, A., González-Hernández, A. I., Llorens, E., García-Agustín, P., Scalschi, L., & Vicedo, B. (2020). The apoplast: A key player in plant survival. Antioxidants, 9(7), 604. https://doi.org/10.3390/antiox9070604
- Fatima, F., Hashim, A., & Anees, S. (2021). Efficacy of nanoparticles as nanofertilizer production: A review. Environmental Science and Pollution Research, 28, 1292–1303.
- Fattahi, N., Tabrizi, B. H., Rani, S., Sadeghi, Z., Dehghanian, Z., Lajayer, B. A., & van Hullebusch, E. D. (2022). Toxicity of nanoparticles onto plants: Overview of the biochemical and molecular mechanisms, Toxicity of nanoparticles in plants (pp. 69–94). Academic Press.
10.1016/B978-0-323-90774-3.00002-7 Google Scholar
- Feng, Y., Kreslavski, V. D., Shmarev, A. N., Ivanov, A. A., Zharmukhamedov, S. K., Kosobryukhov, A., Yu, M., Allakhverdiev, S. I., & Shabala, S. (2022). Effects of iron oxide nanoparticles (Fe3O4) on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum) plants. Plants, 11(14), 1894. https://doi.org/10.3390/plants11141894
10.3390/plants11141894 Google Scholar
- Gantayat, S., Nayak, S. P., Badamali, S. K., Pradhan, C., & Das, A. B. (2020). Analysis on cytotoxicity and oxidative damage of iron nano-composite on Allium cepa L. root meristems. Cytologia, 85(4), 325–332.
- Gao, F., Robe, K., Gaymard, F., Izquierdo, E., & Dubos, C. (2019). The transcriptional control of iron homeostasis in plants: A tale of bHLH transcription factors? Frontiers in Plant Science, 10, 6. https://doi.org/10.3389/fpls.2019.00006
- Gao, S., Brown, B., Young, D., & Singer, M. (2018). Formation of iron oxide and iron sulfide at high temperature and their effects on corrosion. Corrosion Science, 135, 167–176.
- Gelyaman, G. D. (2018). Factors affecting the bioavailability of iron for plants. Jurnal Saintek Lahan Kering, 1(1), 17–19.
10.32938/slk.v1i1.439 Google Scholar
- Ginting, N. (2020). Utilization of blood meal, slaughterhouse waste and bio gas slurry into fertilizer. Indonesian Journal of Agricultural Research, 3(2), 105–115.
10.32734/injar.v3i2.4267 Google Scholar
- Giorgetti, L. (2019). Effects of nanoparticles in plants: Phytotoxicity and genotoxicity assessment. In D. K. Tripathi, P. Ahmad, S. Sharma, D. K. Chauhan, & N. K. Dubey (Eds.), Nanomaterials in plants, algae, and microorganisms (pp. 65–87). Elsevier.
10.1016/B978-0-12-811488-9.00004-4 Google Scholar
- Gorobets, O. Y., Gorobets, S. V., & Sorokina, L. V. (2014). Biomineralization and synthesis of biogenic magnetic nanoparticles and magnetosensitive inclusions in microorganisms and fungi. Functional Materials, 2014(4), 427–436.
10.15407/fm21.04.427 Google Scholar
- Gracheva, M., Klencsár, Z., Kis, V. K., Béres, K. A., May, Z., Halasy, V., Singh, A., Fodor, F., Solti, Á., Kiss, L. F., Tolnai, G., Homonnay, Z., & Kovács, K. (2023). Iron nanoparticles for plant nutrition: Synthesis, transformation, and utilization by the roots of Cucumis sativus. Journal of Materials Research, 38(4), 1035–1047.
- Grillo, R., & Fraceto, L. F. (2022). Impacts of magnetic iron oxide nanoparticles in terrestrial and aquatic environments. In M. A. Williams (Ed.), Toxicology of nanoparticles and nanomaterials in human, terrestrial and aquatic systems (pp. 147–164). Wiley. https://doi.org/10.1002/9781119316329.ch7
10.1002/9781119316329.ch7 Google Scholar
- Guda, M. A., & Semysim, E. A. A. R. A. (2022). Response of a medicinal plant Peganum harmala to iron oxide nanoparticles F3O4 (NPS). Journal of Pharmaceutical Negative Results, 13(8), 990–999.
- Gülser, F., Yavuz, H. İ., Gökkaya, T. H., & Sedef, M. (2019). Effects of iron sources and doses on plant growth criteria in soybean seedlings. Eurasian Journal of Soil Science, 8(4), 298–303.
- Gutiérrez-Ruelas, N. J., Palacio-MáRquez, A., Sanchez, E., MuñOz-MáRquez, E., CháVez-Mendoza, C., Ojeda-Barrios, D. L., & Flores-Cordova, M. A. (2021). Impact of the foliar application of nanoparticles, sulfate and iron chelate on the growth, yield and nitrogen assimilation in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(3), 12437–12437.
- Ha, N., Seo, E., Kim, S., & Lee, S. J. (2021). Adsorption of nanoparticles suspended in a drop on a leaf surface of Perilla frutescens and their infiltration through stomatal pathway. Scientific Reports, 11(1), 11556. https://doi.org/10.1038/s41598-021-91073-x
- Hammad, E. N., Salem, S. S., Mohamed, A. A., & El-Dougdoug, W. (2022). Environmental impacts of ecofriendly iron oxide nanoparticles on dyes removal and antibacterial activity. Applied Biochemistry and Biotechnology, 194(12), 6053–6067.
- Hanikenne, M., Esteves, S. M., Fanara, S., & Rouached, H. (2021). Coordinated homeostasis of essential mineral nutrients: A focus on iron. Journal of Experimental Botany, 72(6), 2136–2153.
- Hu, J., Guo, H., Li, J., Gan, Q., Wang, Y., & Xing, B. (2017). Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima. Environmental Pollution, 221, 199–208.
- Hu, J., Wu, C., Ren, H., Wang, Y., Li, J., & Huang, J. (2018). Comparative analysis of physiological impact of γ-Fe2O3 nanoparticles on dicotyledon and monocotyledon. Journal of Nanoscience and Nanotechnology, 18(1), 743–752.
- Ibrahim, A. M., Kerau, M. I., Saleh, M. H., Sanusi, J., & Adesoji, A. G. (2022). The effect of different types of fertilizer on groundnut (Arachis hypogaea L.) varieties. Acta Scientific Agriculture, 6(11), 42–47.
- Pro Arc Market Insights. (2023). Nano-fertilizers market global opportunity analysis and industry forecast 2022–2030. Pro Arc Market Insights. Nano-Fertilizers Market Global Opportunity Analysis and Industry Forecast 2022-2030. https://www.proarcmarketinsights.com/industry-report/nano-fertilizers-market/1031/
- Irum, S., Jabeen, N., Ahmad, K. S., Shafique, S., Khan, T. F., Gul, H., Anwaar, S., Shah, N. I., Mehmood, A., & Hussain, S. Z. (2020). Biogenic iron oxide nanoparticles enhance callogenesis and regeneration pattern of recalcitrant Cicer arietinum L. Plos One, 15(12), e0242829. https://doi.org/10.1371/journal.pone.0242829
- Jangir, H., Kaler, B., Srivastava, G., & Das, M. (2022). Nano pyrite root treatment in conjunction with soil application of goat droppings boost onion yield and anthocyanin and flavonoids content: A nano-organic farming model towards sustainability. Research Square, Avance online publication. https://doi.org/10.21203/rs.3.rs-1630965/v1
10.21203/rs.3.rs?1630965/v1 Google Scholar
- Jones, J. D. (2020). Iron availability and management considerations: A 4R approach. Crops & Soils, 53(2), 32–37.
10.1002/crso.20019 Google Scholar
- Kalra, T., Tomar, P. C., & Arora, K. (2020). Micronutrient encapsulation using nanotechnology: Nanofertilizers. Plant Archives, 20(2), 1748–1753.
- Kalwani, M., Chakdar, H., Srivastava, A., Pabbi, S., & Shukla, P. (2022). Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives. Chemosphere, 287, 132107. https://doi.org/10.1016/j.chemosphere.2021.132107
- Kamran, M., Ali, H., Saeed, M. F., Bakhat, H. F., Hassan, Z., Tahir, M., Abbas, G., Naeem, M. A., Rashid, M. I., & Shah, G. M. (2020). Unraveling the toxic effects of iron oxide nanoparticles on nitrogen cycling through manure-soil-plant continuum. Ecotoxicology and Environmental Safety, 205, 111099. https://doi.org/10.1016/j.ecoenv.2020.111099
- Kaningini, A. G., Nelwamondo, A. M., Azizi, S., Maaza, M., & Mohale, K. C. (2022). Metal nanoparticles in agriculture: A review of possible use. Coatings, 12(10), 1586.
- Kanjana, D. (2020). Evaluation of foliar application of different types of nanofertilizers on growth, yield and quality parameters and nutrient concentration of cotton under irrigated condition. International Journal of Current Microbiology and Applied Sciences, 9, 429–441.
- Kasote, D. M., Lee, J. H., Jayaprakasha, G. K., & Patil, B. S. (2019). Seed priming with iron oxide nanoparticles modulate antioxidant potential and defense-linked hormones in watermelon seedlings. ACS Sustainable Chemistry & Engineering, 7(5), 5142–5151.
- Khan, M. R., Adam, V., Rizvi, T. F., Zhang, B., Ahamad, F., Jośko, I., Zhu, Y., Yang, M., & Mao, C. (2019). Nanoparticle–plant interactions: Two-way traffic. Small, 15(37), 1901794. https://doi.org/10.1002/smll.201901794
- Kim, L. J., Tsuyuki, K. M., Hu, F., Park, E. Y., Zhang, J., Iraheta, J. G., Chia, J., Huang, R., Tucker, A. E., Clyne, M., Castellano, C., Kim, A., Chung, D. D., Daveiga, C. T., Elizabeth, M., Vatamaniuk, O. K., & Jeong, J. (2021). Ferroportin 3 is a dual-targeted mitochondrial/chloroplast iron exporter necessary for iron homeostasis in Arabidopsis. The Plant Journal, 107(1), 215–236.
- Klem-Marciniak, E., Huculak-Mączka, M., Marecka, K., Hoffmann, K., & Hoffmann, J. (2021). Chemical stability of the fertilizer chelates Fe-EDDHA and Fe-EDDHSA over time. Molecules, 26(7), 1933. https://doi.org/10.3390/molecules26071933
- Kobayashi, T., Nozoye, T., & Nishizawa, N. K. (2019). Iron transport and its regulation in plants. Free Radical Biology and Medicine, 133, 11–20.
- Kokina, I., Plaksenkova, I., Jermaļonoka, M., & Petrova, A. (2020). Impact of iron oxide nanoparticles on yellow medick (Medicago falcata L.) plants. Journal of Plant Interactions, 15(1), 1–7.
- Kong, W. L., Wang, Y. H., & Wu, X. Q. (2021). Enhanced iron uptake in plants by volatile emissions of Rahnella aquatilis JZ-GX1. Frontiers in Plant Science, 12, 704000. https://doi.org/10.3389/fpls.2021.704000
- Kosegarten, H. U., Hoffmann, B., & Mengel, K. (1999). Apoplastic pH and Fe3+ reduction in intact sunflower leaves. Plant Physiology, 121(4), 1069–1079.
- Kroh, G. E., & Pilon, M. (2020). Regulation of iron homeostasis and use in chloroplasts. International Journal of Molecular Sciences, 21(9), 3395. https://doi.org/10.3390/ijms21093395
- Kuehr, S., Kosfeld, V., & Schlechtriem, C. (2021). Bioaccumulation assessment of nanomaterials using freshwater invertebrate species. Environmental Sciences Europe, 33, 9.
- Kumar, N., Samota, S. R., Venkatesh, K., & Tripathi, S. C. (2023). Global trends in use of nano-fertilizers for crop production: Advantages and constraints–A review. Soil and Tillage Research, 228, 105645. https://doi.org/10.1016/j.still.2023.105645
- Kumar, P. (2020). Role of nanoscience in agriculture. https://doi.org/10.20944/preprints202011.0637.v1
10.20944/preprints202011.0637.v1 Google Scholar
- Kumar, Y., Tiwari, K. N., Singh, T., Sain, N. K., Laxmi, S., Verma, R., Sharma, G. C., & Raliya, R. (2020). Nanofertilizers for enhancing nutrient use efficiency, crop productivity and economic returns in winter season crops of Rajasthan. Annals of Plant and Soil Research, 22(4), 324–335.
10.47815/apsr.2020.10001 Google Scholar
- Kurczyńska, E., Godel-Jędrychowska, K., Sala, K., & Milewska-Hendel, A. (2021). Nanoparticles—plant interaction: What we know, where we are? Applied Sciences, 11(12), 5473.
- Lau, E. C. H. T., Carvalho, L. B., Pereira, A. E. S., Montanha, G. S., Corrêa, C. G., Carvalho, H. W. P., Ganin, A. Y., Fraceto, L. F., & Yiu, H. H. P. (2020). Localization of coated iron oxide (Fe3O4) nanoparticles on tomato seeds and their effects on growth. ACS Applied Bio Materials, 3(7), 4109–4117.
- Le Wee, J., Law, M. C., Chan, Y. S., Choy, S. Y., & Tiong, A. N. T. (2022). The potential of Fe-based magnetic nanomaterials for the agriculture sector. ChemistrySelect, 7(17), e202104603. https://doi.org/10.1002/slct.202104603
- Lei, C., Sun, Y., Tsang, D. C., & Lin, D. (2018). Environmental transformations and ecological effects of iron-based nanoparticles. Environmental Pollution, 232, 10–30.
- Li, M., Watanabe, S., Gao, F., & Dubos, C. (2023). Iron Nutrition in plants: Towards a new paradigm? Plants, 12(2), 384. https://doi.org/10.3390/plants12020384
- Liang, G. (2022). Iron uptake, signaling, and sensing in plants. Plant Communications, 3, 100349. https://doi.org/10.1016/j.xplc.2022.100349
- Lindsay, W. L., & Schwab, A. P. (1982). The chemistry of iron in soils and its availability to plants. Journal of Plant Nutrition, 5(4–7), 821–840.
- López-Millán, A. F., Duy, D., & Philippar, K. (2016). Chloroplast iron transport proteins–function and impact on plant physiology. Frontiers in Plant Science, 7, 178. https://doi.org/10.3389/fpls.2016.00178
- Lucena, J. J., & Hernandez-Apaolaza, L. (2017). Iron nutrition in plants: An overview. Plant and Soil, 418, 1–4.
- Lurthy, T., Pivato, B., Lemanceau, P., & Mazurier, S. (2021). Importance of the rhizosphere microbiota in iron biofortification of plants. Frontiers in Plant Science, 12, 744445. https://doi.org/10.3389/fpls.2021.744445
- Lv, J., Christie, P., & Zhang, S. (2019). Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent advances and methodological challenges. Environmental Science: Nano, 6(1), 41–59.
- Mahawar, H., & Prasanna, R. (2018). Prospecting the interactions of nanoparticles with beneficial microorganisms for developing green technologies for agriculture. Environmental Nanotechnology, Monitoring & Management, 10, 477–485.
10.1016/j.enmm.2018.09.004 Google Scholar
- Mahil, E. I. T., & Kumar, B. A. (2019). Foliar application of nanofertilizers in agricultural crops–A review. Journal of Farm Sciences, 32(3), 239–249.
- Majeed, A., Minhas, W. A., Mehboob, N., Farooq, S., Hussain, M., Alam, S., & Rizwan, M. S. (2020). Iron application improves yield, economic returns and grain-Fe concentration of mungbean. PLoS One, 15(3), e0230720. https://doi.org/10.1371/journal.pone.0230720
- Majumdar, A., Upadhyay, M. K., Giri, B., Karwadiya, J., Bose, S., & Jaiswal, M. K. (2023). Iron oxide doped rice biochar reduces soil-plant arsenic stress, improves nutrient values: An amendment towards sustainable development goals. Chemosphere, 312, 137117. https://doi.org/10.1016/j.chemosphere.2022.137117
- Marschner, H. (2011). Marschner's mineral nutrition of higher plants. Academic Press.
- Martín-Barranco, A., Thomine, S., Vert, G., & Zelazny, E. (2021). A quick journey into the diversity of iron uptake strategies in photosynthetic organisms. Plant Signaling & Behavior, 16(11), 1975088. https://doi.org/10.1080/15592324.2021.1975088
- Martínez, G., Merinero, M., Pérez-Aranda, M., Pérez-Soriano, E. M., Ortiz, T., Begines, B., & Alcudia, A. (2020). Environmental impact of nanoparticles’ application as an emerging technology: A review. Materials, 14(1), 166. https://doi.org/10.3390/ma14010166
- Mazhar, M. W., Ishtiaq, M., Maqbool, M., Akram, R., Shahid, A., Shokralla, S., Al-Ghobari, H., Alataway, A., Dewidar, A. Z., El-Sabrout, A. M., & Elansary, H. O. (2022). Seed priming with iron oxide nanoparticles raises biomass production and agronomic profile of water-stressed flax plants. Agronomy, 12(5), 982. https://doi.org/10.3390/agronomy12050982
- Mengel, K., Planker, R., & Hoffmann, B. (1994). Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthus annuus L.). Journal of Plant Nutrition, 17(6), 1053–1065.
- Mitra, R., Yadav, P., Usha, K., & Singh, B. (2022). Regulatory role of organic acids and phytochelators in influencing the rhizospheric availability of phosphorus and iron and their uptake by plants. Plant Physiology Reports, 27(2), 193–206.
- Mittal, D., Kaur, G., Singh, P., Yadav, K., & Ali, S. A. (2020). Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Frontiers in Nanotechnology, 2, 579954. https://doi.org/10.3389/fnano.2020.579954
10.3389/fnano.2020.579954 Google Scholar
- Momtaz, N., Parvin, A., Hossain, M., Saha, B., Moniruzzaman, M., Kibria, A., Sarker, M., & Munshi, J. L. (2021). Blood meal organic fertiliser application on onion yield. Bangladesh Journal of Scientific and Industrial Research, 56(2), 87–94.
- Morab, P. N., GV, S. K., Rameshbhai, K. A., & Uma, V. (2021). Foliar nutrition of nano-fertilizers: A smart way to increase the growth and productivity of crops. Journal of Pharmacognosy and Phytochemistry, 10(1), 1325–1330.
- Mounier, L., Pédrot, M., Bouhnik-Le-Coz, M., & Cabello-Hurtado, F. (2023). Impact of iron oxide nanoparticles on a lead-polluted water–soil–plant system under alternating periods of water stress. Environmental Science: Advances, 2(5), 767–779.
- Müller, K., Mingers, T., Haskamp, V., Jahn, D., & Jahn, M. (2019). Biosynthesis and insertion of heme, Aerobic utilization of hydrocarbons, oils, and lipids (pp. 1–28). Springer.
10.1007/978-3-319-50418-6_17 Google Scholar
- Munjal, P., & Munjal, R. (2022). Agricultural nanobiotechnology: Current possibilities and constraints, Nanotechnology in agriculture and environmental science (pp. 1–14). CRC Press.
10.1201/9781003323945-1 Google Scholar
- Murata, Y., Murata, J., & Namba, K. (2022). Unraveling the new biological roles and possible applications of phytosiderophores in plants and mammals. Metallomics Research, 2(2), MR202202. https://doi.org/10.11299/metallomicsresearch.MR202202
10.11299/metallomicsresearch.MR202202 Google Scholar
- NAAS (2017). Strategy on utilization of glauconite mineral as source of potassium. National Academy of Agricultural Sciences. Strategy on utilization of glauconite mineral as source of potassium. http://naas.org.in/spapers/Strategy%20Paper%20No.%206.pdf
- Nadeem, F., Hanif, M. A., Majeed, M. I., & Mushtaq, Z. (2018). Role of macronutrients and micronutrients in the growth and development of plants and prevention of deleterious plant diseases—A comprehensive review. International Journal of Chemical and Biochemical Sciences, 13, 31–52.
- Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179(3), 154–163.
- Natarajan, S., Harini, K., Gajula, G. P., Sarmento, B., Neves-Petersen, M. T., & Thiagarajan, V. (2019). Multifunctional magnetic iron oxide nanoparticles: Diverse synthetic approaches, surface modifications, cytotoxicity towards biomedical and industrial applications. BMC Materials, 1(1), 2.
10.1186/s42833-019-0002-6 Google Scholar
- Nazeer, A. A., Udhayakumar, S., Mani, S., Dhanapal, M., & Vijaykumar, S. D. (2018). Surface modification of Fe2O3 and MgO nanoparticles with agrowastes for the treatment of chlorosis in Glycine max. Nano Convergence, 5(1), 23.
- Negi, M., Sharma, S., Sharma, U., Kumar, P., Sharma, U., & Sharma, K. (2023). Aspects of the current and prospective sustainable usage of nanofertilizers in agriculture and their effects on health of the soil: An updated review. Journal of Soil Science and Plant Nutrition, 23(1), 594–611.
- Neto, M. E., Britt, D. W., Jackson, K. A., Almeida Junior, J. H., Lima, R. S., Zaia, D. A., Inoue, T. T., & Batista, M. A. (2023). Synthesis and characterization of zinc, iron, copper, and manganese oxides nanoparticles for possible application as plant fertilizers. Journal of Nanomaterials, 2023, 1312288. https://doi.org/10.1155/2023/1312288
10.1155/2023/1312288 Google Scholar
- Nieciecka, D., Krolikowska, A., Kijewska, K., Blanchard, G. J., & Krysinski, P. (2016). Hydrophilic iron oxide nanoparticles probe the organization of biomimetic layers: Electrochemical and spectroscopic evidence. Electrochimica Acta, 209, 671–681.
- Ning, X., Lin, M., Huang, G., Mao, J., Gao, Z., & Wang, X. (2023). Research progress on iron absorption, transport, and molecular regulation strategy in plants. Frontiers in Plant Science, 14, 1190768. https://doi.org/10.3389/fpls.2023.1190768
- Obi, C. D., Bhuiyan, T., Dailey, H. A., & Medlock, A. E. (2022). Ferrochelatase: Mapping the intersection of iron and porphyrin metabolism in the mitochondria. Frontiers in Cell and Developmental Biology, 10, 961. https://doi.org/10.3389/fcell.2022.894591
- Olson, K. R. (2020). Reactive oxygen species or reactive sulfur species: Why we should consider the latter. Journal of Experimental Biology, 223(4), jeb196352. https://doi.org/10.1242/jeb.196352
- Ortas, I., Kaya, Z., & Ercan, S. (2015). Effect of pyrite application on wheat-maize growth and nutrient uptake under diverse soil conditions. Journal of Plant Nutrition, 38(2), 295–309.
- Palanisamy, S., Subramaniam, B. S., Thangamuthu, S., Nallusamy, S., & Rengasamy, P. (2021). Review on agro-based nanotechnology through plant-derived green nanoparticles: Synthesis, application and challenges. Journal of Environmental Science and Public Health, 5(1), 77–98.
10.26502/jesph.96120118 Google Scholar
- Parkinson, S. J., Tungsirisurp, S., Joshi, C., Richmond, B. L., Gifford, M. L., Sikder, A., Lynch, I., O'Reilly, R. K., & Napier, R. M. (2022). Polymer nanoparticles pass the plant interface. Nature Communications, 13(1), 7385. https://doi.org/10.1038/s41467-022-35066-y
- Pathare, V. S., Koteyeva, N., & Cousins, A. B. (2020). Increased adaxial stomatal density is associated with greater mesophyll surface area exposed to intercellular air spaces and mesophyll conductance in diverse C4 grasses. New Phytologist, 225(1), 169–182.
- Patra, A., Sharma, V. K., Jatav, H. S., Dutta, A., Rekwar, R. K., Chattopadhyay, A., Trivedi, A., Mohapatra, K. K., & Anil, A. S. (2021). Iron in the soil–plant–human continuum. Frontiers in Plant-Soil Interaction, 2021, 531–546.
10.1016/B978-0-323-90943-3.00009-2 Google Scholar
- Perea Velez, Y. S., Carrillo-Gonzalez, R., & Gonzalez-Chavez, M. D. C. A. (2021). Interaction of metal nanoparticles–plants–microorganisms in agriculture and soil remediation. Journal of Nanoparticle Research, 23(9), 206.
- Pérez-de-Luque, A. (2017). Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Frontiers in Environmental Science, 5, 12. https://doi.org/10.3389/fenvs.2017.00012
- Peys, A., Isteri, V., Yliniemi, J., Yorkshire, A. S., Lemougna, P. N., Utton, C., Provis, J. L., Snellings, R., & Hanein, T. (2022). Sustainable iron-rich cements: Raw material sources and binder types. Cement and Concrete Research, 157, 106834. https://doi.org/10.1016/j.cemconres.2022.106834
- Poudel, A., Singh, S. K., Jiménez-Ballesta, R., Jatav, S. S., Patra, A., & Pandey, A. (2023). Effect of nano-phosphorus formulation on growth, yield and nutritional quality of wheat under semi-arid climate. Agronomy, 13(3), 768. https://doi.org/10.3390/agronomy13030768
- Predoi, D., Ghita, R. V., Iconaru, S. L., Cimpeanu, C. L., & Raita, S. M. (2020). Application of nanotechnology solutions in plants fertilization. Urban Horticulture-Necessity of the Future, 9, 12–40.
- Przybyla-Toscano, J., Christ, L., Keech, O., & Rouhier, N. (2021). Iron–sulfur proteins in plant mitochondria: Roles and maturation. Journal of Experimental Botany, 72(6), 2014–2044.
- Radhakrishnan, R. (2019). Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiology and Molecular Biology of Plants, 25(5), 1107–1119.
- Rahemi, M., Gharechahi, S. R., & Sedaghat, S. (2020). The application of nano-iron chelate and iron chelate to soil and as foliar application: Treatments against chlorosis and fruit quality in quince. International Journal of Fruit Science, 20(3), 300–313.
- Rai, P., Sharma, S., Tripathi, S., Prakash, V., Tiwari, K., Suri, S., & Sharma, S. (2022). Nanoiron: Uptake, translocation and accumulation in plant systems. Plant Nano Biology, 2, 100017. https://doi.org/10.1016/j.plana.2022.100017
10.1016/j.plana.2022.100017 Google Scholar
- Rai, S., Singh, P. K., Mankotia, S., Swain, J., & Satbhai, S. B. (2021). Iron homeostasis in plants and its crosstalk with copper, zinc, and manganese. Plant Stress, 1, 100008. https://doi.org/10.1016/j.stress.2021.100008
- Rasaili, P., Sharma, N. K., & Bhattarai, A. (2022). Comparison of ferromagnetic materials: Past work, recent trends, and applications. Condensed Matter, 7(1), 12. https://doi.org/10.3390/condmat7010012
- Rasel, M. A. I., Singh, S., Nguyen, T. D., Afara, I. O., & Gu, Y. (2019). Impact of nanoparticle uptake on the biophysical properties of cell for biomedical engineering applications. Scientific Reports, 9(1), 5859. https://doi.org/10.1038/s41598-019-42225-7
- Rasheed, A., Li, H., Tahir, M. M., Mahmood, A., Nawaz, M., Shah, A. N., Aslam, M. T., Negm, S., Moustafa, M., Hassan, M. U., & Wu, Z. (2022). The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. Frontiers in Plant Science, 13, 976179. https://doi.org/10.3389/fpls.2022.976179
- Rastogi, A., Zivcak, M., Sytar, O., Kalaji, H. M., He, X., Mbarki, S., & Brestic, M. (2017). Impact of metal and metal oxide nanoparticles on plant: A critical review. Frontiers in Chemistry, 5, 78. https://doi.org/10.3389/fchem.2017.00078
- Rathod, V. T. (2020). Application of nanocomposite materials and nanofertilizer. Journal of Emerging Technologies and Innovative Research, 7, 1151–1154.
- Read, A. D., Bentley, R. E., Archer, S. L., & Dunham-Snary, K. J. (2021). Mitochondrial iron–sulfur clusters: Structure, function, and an emerging role in vascular biology. Redox Biology, 47, 102164. https://doi.org/10.1016/j.redox.2021.102164
- Reshma, Z., & Meenal, K. (2022). Foliar application of biosynthesised zinc nanoparticles as a strategy for ferti-fortification by improving yield, zinc content and zinc use efficiency in amaranth. Heliyon, 8(10), e10912. https://doi.org/10.1016/j.heliyon.2022.e10912
- Rezk, A. I., & Nofal, O. A. (2021). Nano fertilizers, their role and uses in crop productivity. A review. Current Science International, 10(2), 295–308.
- Roemheld, V. (2005). Plant nutrients. In R. Lal (Ed.), Encyclopedia of soil science (pp. 1299–1301). Taylor and Francis.
- Rui, M., Ma, C., Hao, Y., Guo, J., Rui, Y., Tang, X., Zhao, Q., Fan, X., Zhang, Z., Hou, T., & Zhu, S. (2016). Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Frontiers in Plant Science, 7, 815. https://doi.org/10.3389/fpls.2016.00815
- Saleem, S., & Khan, M. S. (2023). Phyto-interactive impact of green synthesized iron oxide nanoparticles and Rhizobium pusense on morpho-physiological and yield components of greengram. Plant Physiology and Biochemistry, 194, 146–160.
- Samrot, A. V., Sai Priya, C., Jenifer Selvarani, A., Venket Subbu, R., Jane Cypriyana, P. J., Lavanya, Y., Shehanaz Afreen, R., Soundarya, P., Sherly Priyanka, R. B., Sangeetha, P., Varghese, R. J., & Suresh Kumar, S. (2020). A study on influence of superparamagnetic iron oxide nanoparticles (SPIONs) on green gram (Vigna radiata L.) and earthworm (Eudrilus eugeniae L.). Materials Research Express, 7, 055002. https://doi.org/10.1088/2053-1591/ab8b17
- Samundeswari, R., Jeyapandiyan, N., Anitha, M., Kalaiarasi, J. P., Poonguzhali, R. S., Jayapradha, C., Rathikannu, S., & Kumar, K. U. (2023). Impact of different levels of iron fertilizer on growth and yield physiology of Kodo millet under rainfed conditions–An overview. Journal of Applied Biology and Biotechnology, 11(2), 33–40.
- Sankavi, R. J., Avudaithai, S., Somasundaram, S., Sherene, T., & Rajammal, J. (2020). Effect of zinc and iron enriched organic manures on growth and yield of rice under sodic soil conditions. International Journal of Current Microbiology and Applied Sciences, 9, 2670–2674.
- Schmidt, W., Thomine, S., & Buckhout, T. J. (2020). Iron nutrition and interactions in plants. Frontiers in Plant Science, 10, 1670. https://doi.org/10.3389/fpls.2019.01670
- Schwarz, B., & Bauer, P. (2020). FIT, a regulatory hub for iron deficiency and stress signaling in roots, and FIT-dependent and-independent gene signatures. Journal of Experimental Botany, 71(5), 1694–1705.
- Seleiman, M. F., Almutairi, K. F., Alotaibi, M., Shami, A., Alhammad, B. A., & Battaglia, M. L. (2020). Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants, 10(1), 2. https://doi.org/10.3390/plants10010002
- Shaddox, T. W., Fu, H., Gardner, D. S., Goss, R. M., Guertal, E. A., Kreuser, W. C., Miller, G. L., Stewart, B. R., Tang, K., & Unruh, J. B. (2019). Solubility of ten iron fertilizers in eleven north American soils. Agronomy Journal, 111(3), 1498–1505.
- Shang, Y., Hasan, M. K., Ahammed, G. J., Li, M., Yin, H., & Zhou, J. (2019). Applications of nanotechnology in plant growth and crop protection: A review. Molecules, 24(14), 2558. https://doi.org/10.3390/molecules24142558
- Shenker, M., & Chen, Y. (2005). Increasing iron availability to crops: Fertilizers, organo-fertilizers, and biological approaches. Soil Science & Plant Nutrition, 51(1), 1–17.
- Shukla, A. K., Behera, S. K., Chaudhari, S. K., & Singh, G. (2022). Fertilizer use in Indian agriculture and its impact on human health and environment. Indian Journal of Fertilization, 18, 218–237.
- Singh, A., Gracheva, M., Kovács Kis, V., Keresztes, Á., Sági-Kazár, M., Müller, B., Pankaczi, F., Ahmad, W., Kovács, K., May, Z., Tolnai, G., Homonnay, Z., Fodor, F., Klencsár, Z., & Solti, Á. (2023). Apoplast utilisation of nanohaematite initiates parallel suppression of RIBA1 and FRO1&3 in Cucumis sativus. NanoImpact, 29, 100444. https://doi.org/10.1016/j.impact.2022.100444
- Somani, L. L. (1994). Use of pyrites in agriculture. Agrotech Publishing Academy.
- Souza, L. R. R., Bernardes, L. E., Barbetta, M. F. S., & da Veiga, M. A. M. S. (2019). Iron oxide nanoparticle phytotoxicity to the aquatic plant Lemna minor: Effect on reactive oxygen species (ROS) production and chlorophyll a/chlorophyll b ratio. Environmental Science and Pollution Research, 26, 24121–24131.
- Spanos, A., Athanasiou, K., Ioannou, A., Fotopoulos, V., & Krasia-Christoforou, T. (2021). Functionalized magnetic nanomaterials in agricultural applications. Nanomaterials, 11(11), 3106. https://doi.org/10.3390/nano11113106
- Srivastava, G., Das, A., Kusurkar, T. S., Roy, M., Airan, S., Sharma, R. K., Singh, S. K., Sarkar, S., & Das, M. (2014). Iron pyrite, a potential photovoltaic material, increases plant biomass upon seed pretreatment. Materials Express, 4(1), 23–31.
- Srivastava, G., Das, C. K., Das, A., Singh, S. K., Roy, M., Kim, H., Sethy, N., Kumar, A., Sharma, R. K., Singh, S. K., Philip, D., & Das, M. (2014). Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach. RSC Advances, 4(102), 58495–58504.
- Subramani, M., Durairaj, J., Thiyagarajan, C., & Muthumani, J. (2021). Synthesis of iron chelates for remediation of iron deficiency in an alkaline and calcareous soil. Journal of Applied and Natural Science, 13(SI), 149–155.
- Sun, H., Qu, G., Li, S., Song, K., Zhao, D., Li, X., Yang, P., He, X., & Hu, T. (2023). Iron nanoparticles induced the growth and physio-chemical changes in Kobresia capillifolia seedlings. Plant Physiology and Biochemistry, 194, 15–28.
- Tang, J., & Riley, W. J. (2021). Finding Liebig's law of the minimum. Ecological Applications, 31(8), e02458. https://doi.org/10.1002/eap.2458
- Tara Meghana, K., & Vamsi, G. (2021). Nanofertilizers in agriculture. Acta Scientific Agriculture, 5, 35–46.
10.31080/ASAG.2021.05.0956 Google Scholar
- Tawfik, M. M., Mohamed, M. H., Sadak, M. S., & Thalooth, A. T. (2021). Iron oxide nanoparticles effect on growth, physiological traits and nutritional contents of Moringa oleifera grown in saline environment. Bulletin of the National Research Centre, 45(1), 1–9.
10.1186/s42269-021-00624-9 Google Scholar
- Tombuloglu, H., Slimani, Y., Akhtar, S., Alsaeed, M., Tombuloglu, G., Almessiere, M. A., Toprak, M. S., Sozeri, H., Baykal, A., & Ercan, I. (2022). The size of iron oxide nanoparticles determines their translocation and effects on iron and mineral nutrition of pumpkin (Cucurbita maxima L.). Journal of Magnetism and Magnetic Materials, 564, 170058. https://doi.org/10.1016/j.jmmm.2022.170058
- Tovar, G. I., Briceño, S., Suarez, J., Flores, S., & González, G. (2020). Biogenic synthesis of iron oxide nanoparticles using Moringa oleifera and chitosan and its evaluation on corn germination. Environmental Nanotechnology, Monitoring & Management, 14, 100350. https://doi.org/10.1016/j.enmm.2020.100350
10.1016/j.enmm.2020.100350 Google Scholar
- Tozsin, G., Arol, A. I., & Cayci, G. (2015). Use of waste pyrite as an alternative to gypsum for alkaline soil amelioration. International Journal of Mining, Reclamation and Environment, 29(3), 169–177.
- Traore, E. S., & Liu, A. (2022). Charge maintenance during catalysis in nonheme iron oxygenases. ACS Catalysis, 12(10), 6191–6208.
- Tripathi, D. K., Singh, S., Gaur, S., Singh, S., Yadav, V., Liu, S., Singh, V. P., Sharma, S., Srivastava, P., Prasad, S. M., Dubey, N. K., Chauhan, D. K., & Sahi, S. (2018). Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Frontiers in Environmental Science, 5, 86. https://doi.org/10.3389/fenvs.2017.00086
- Tsai, H. H., & Schmidt, W. (2021). The enigma of environmental pH sensing in plants. Nature Plants, 7(2), 106–115.
- Vaughan, D. J., & Lennie, A. R. (1991). The iron sulphide minerals: Their chemistry and role in nature. Science Progress, 1933, 371–388.
- Velez-Bermudez, I. C., & Schmidt, W. (2023). Iron sensing in plants. Frontiers in Plant Science, 14, 1145510. https://doi.org/10.3389/fpls.2023.1145510
- Verbon, E. H., Trapet, P. L., Stringlis, I. A., Kruijs, S., Bakker, P. A., & Pieterse, C. M. (2017). Iron and immunity. Annual Review of Phytopathology, 55, 355–375.
- Verma, M. L., Kumar, P., Sharma, D., Verma, A. D., & Jana, A. K. (2019). Advances in nanobiotechnology with special reference to plant systems. In R. Prasad (Ed.), Plant nanobionics: Volume 1: Advances in the understanding of nanomaterials research and applications (pp. 371–387). Springer.
10.1007/978-3-030-12496-0_13 Google Scholar
- Vigani, G., & Murgia, I. (2018). Iron-requiring enzymes in the spotlight of oxygen. Trends in Plant Science, 23(10), 874–882.
- Wang, Q., Chen, M., Hao, Q., Zeng, H., & He, Y. (2021). Research and progress on the mechanism of iron transfer and accumulation in rice grains. Plants, 10(12), 2610. https://doi.org/10.3390/plants10122610
- Wang, Y., Blatt, M. R., & Chen, Z. (2018). Ion Transport at the Plant Plasma Membrane. ELS, 1–16. Wiley. https://doi.org/10.1002/9780470015902.a0001307.pub3
10.1002/9780470015902.a0001307.pub3 Google Scholar
- Wohlmuth, J., Tekielska, D., Čechová, J., & Baránek, M. (2022). Interaction of the nanoparticles and plants in selective growth stages—Usual effects and resulting impact on usage perspectives. Plants, 11(18), 2405. https://doi.org/10.3390/plants11182405
- Wu, H., & Li, Z. (2022). Nano-enabled agriculture: How nanoparticles cross barriers in plants. Plant Communications, 3(6), 100346. https://doi.org/10.1016/j.xplc.2022.100346
- Wu, L., Wen, W., Wang, X., Huang, D., Cao, J., Qi, X., & Shen, S. (2022). Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs. Particle and Fibre Toxicology, 19(1), 24.
- Yadav, A., Yadav, K., & Abd-Elsalam, K. A. (2023). Nanofertilizers: Types, delivery and advantages in agricultural sustainability. Agrochemicals, 2(2), 296–336.
10.3390/agrochemicals2020019 Google Scholar
- Yang, Y. F., Lin, Y. J., & Liao, C. M. (2017). Toxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in Caenorhabditis elegans. International Journal of Nanomedicine, 2017, 4607–4621.
10.2147/IJN.S138790 Google Scholar
- Yara (2022). Fertilizer industry handbook 2022. Yara. Fertilizer industry handbook 2022. https://www.yara.com/contentassets/29b0f7802aae4f7face19d5c3495be77/fertilizer-industry-handbook-2022.pdf/
- Yuan, J., Chen, Y., Li, H., Lu, J., Zhao, H., Liu, M., Nechitaylo, G. S., & Glushchenko, N. N. (2018). New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Scientific Reports, 8(1), 3228. https://doi.org/10.1038/s41598-017-18055-w
- Yuan, Y., Wang, L., & Gao, L. (2020). Nano-sized iron sulfide: Structure, synthesis, properties, and biomedical applications. Frontiers in Chemistry, 8, 818. https://doi.org/10.3389/fchem.2020.00818
- Zebec, V., Lisjak, M., Jović, J., Kujundžić, T., Rastija, D., & Lončarić, Z. (2021). Vineyard fertilization management for iron deficiency and chlorosis prevention on carbonate soil. Horticulturae, 7(9), 285. https://doi.org/10.3390/horticulturae7090285
- Zelinka, S. L., Houtman, C. J., Hirth, K., Lacher, S., Lorenz, L., Engelund Thybring, E., & Hunt, C. G. (2020). The effect of acetylation on iron uptake and diffusion in water saturated wood cell walls and implications for decay. Forests, 11(10), 1121. https://doi.org/10.3390/f11101121
- Zhang, R., Zhang, W., Kang, Y., Shi, M., Yang, X., Li, H., Yu, H., Wang, Y., & Qin, S. (2022). Application of different foliar iron fertilizers for improving the photosynthesis and tuber quality of potato (Solanum tuberosum L.) and enhancing iron biofortification. Chemical and Biological Technologies in Agriculture, 9(1), 79. https://doi.org/10.1186/s40538-022-00346-8
- Zhang, X., Zhang, D., Sun, W., & Wang, T. (2019). The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. International Journal of Molecular Sciences, 20(10), 2424.
- Zhu, N., Ji, H., Yu, P., Niu, J., Farooq, M. U., Akram, M. W., Udego, I. O., Li, H., & Niu, X. (2018). Surface modification of magnetic iron oxide nanoparticles. Nanomaterials, 8(10), 810. https://doi.org/10.3390/nano8100810
- Zia-ur-Rehman, M., Naeem, A., Khalid, H., Rizwan, M., Ali, S., & Azhar, M. (2018). Responses of plants to iron oxide nanoparticles. In D. K. Tripathi, P. Ahmad, S. Sharma, D. K. Chauhan, & N. K. Dubey (Eds.), Nanomaterials in plants, algae, and microorganisms (pp. 221–238). Academic Press.
- Zuluaga, M. Y. A., Cardarelli, M., Rouphael, Y., Cesco, S., Pii, Y., & Colla, G. (2023). Iron nutrition in agriculture: From synthetic chelates to biochelates. Scientia Horticulturae, 312, 111833. https://doi.org/10.1016/j.scienta.2023.111833
- Zúñiga, O., Benavides, J. A., Ospina-Salazar, D. I., Jiménez, C. O., & Gutiérrez, M. A. (2016). Magnetic treatment of irrigation water and seeds in agriculture. Ingeniería y Competitividad, 18(2), 217–232.