PET-MRI of Coronary Artery Disease
Beth Whittington MD
BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorMarc R. Dweck MBChB, PhD
BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorEdwin J.R. van Beek MD, PhD
Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorDavid Newby DM, PhD
BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorCorresponding Author
Michelle C. Williams MBChB, PhD
BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
Address reprint requests to: M.C.W., Chancellor's Building, 49 Little France Crescent, Edinburgh EH16SUF, UK. E-mail: [email protected]
Search for more papers by this authorBeth Whittington MD
BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorMarc R. Dweck MBChB, PhD
BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorEdwin J.R. van Beek MD, PhD
Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorDavid Newby DM, PhD
BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
Search for more papers by this authorCorresponding Author
Michelle C. Williams MBChB, PhD
BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
Edinburgh Imaging Facility QMRI, University of Edinburgh, Edinburgh, UK
Address reprint requests to: M.C.W., Chancellor's Building, 49 Little France Crescent, Edinburgh EH16SUF, UK. E-mail: [email protected]
Search for more papers by this authorAbstract
Simultaneous positron emission tomography and magnetic resonance imaging (PET-MRI) combines the anatomical detail and tissue characterization of MRI with the functional information from PET. Within the coronary arteries, this hybrid technique can be used to identify biological activity combined with anatomically high-risk plaque features to better understand the processes underlying coronary atherosclerosis. Furthermore, the downstream effects of coronary artery disease on the myocardium can be characterized by providing information on myocardial perfusion, viability, and function. This review will describe the current capabilities of PET-MRI in coronary artery disease and discuss the limitations and future directions of this emerging technique.
Level of Evidence
5
Technical Efficacy
Stage 3
Conflict of Interest
Dr Williams has given lectures at meetings sponsored by Canon Medical Systems and Siemens Healthineers.
References
- 1Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: Epidemiological update 2016. Eur Heart J 2016; 37(42): 3232-3245.
- 2Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014; 114(12): 1852-1866.
- 3Nensa F, Bamberg F, Rischpler C, et al. Hybrid cardiac imaging using PET/MRI: A joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM). Eur Radiol 2018; 28(10): 4086-4101.
- 4Robson PM, Dey D, Newby DE, et al. MR/PET imaging of the cardiovascular system. JACC Cardiovasc Imaging 2017; 10(10 Pt A): 1165-1179.
- 5Andrews JPM, MacNaught G, Moss AJ, et al. Cardiovascular 18F-fluoride positron emission tomography-magnetic resonance imaging: A comparison study. J Nucl Cardiol 2021; 28(5): 1-12.
- 6Rischpler C, Dirschinger RJ, Nekolla SG, et al. Prospective evaluation of 18F-fluorodeoxyglucose uptake in postischemic myocardium by simultaneous positron emission tomography/magnetic resonance imaging as a prognostic marker of functional outcome. Circ Cardiovasc Imaging 2016; 9(4):e004316.
- 7Rischpler C, Langwieser N, Souvatzoglou M, et al. PET/MRI early after myocardial infarction: Evaluation of viability with late gadolinium enhancement transmurality vs. 18F-FDG uptake. Eur Heart J Cardiovasc Imaging 2015; 16(6): 661-669.
- 8Vitadello T, Kunze KP, Nekolla SG, et al. Hybrid PET/MR imaging for the prediction of left ventricular recovery after percutaneous revascularisation of coronary chronic total occlusions. Eur J Nucl Med Mol Imaging 2020; 47(13): 3074-3083.
- 9Marchesseau S, Seneviratna A, Sjöholm AT, et al. Hybrid PET/CT and PET/MRI imaging of vulnerable coronary plaque and myocardial scar tissue in acute myocardial infarction. J Nucl Cardiol 2018; 25(6): 2001-2011.
- 10Notohamiprodjo S, Nekolla SG, Robu S, et al. Imaging of cardiac fibroblast activation in a patient after acute myocardial infarction using (68)Ga-FAPI-04. J Nucl Cardiol 2022; 29: 2254-2261.
- 11Kunze KP, Nekolla SG, Rischpler C, et al. Myocardial perfusion quantification using simultaneously acquired (13) NH(3)-ammonia PET and dynamic contrast-enhanced MRI in patients at rest and stress. Magn Reson Med 2018; 80(6): 2641-2654.
- 12Kero T, Johansson E, Engström M, et al. Evaluation of quantitative CMR perfusion imaging by comparison with simultaneous (15)O-water-PET. J Nucl Cardiol 2021; 28(4): 1252-1266.
- 13Mangla A, Oliveros E, Williams KA, Kalra DK. Cardiac imaging in the diagnosis of coronary artery disease. Curr Probl Cardiol 2017; 42(10): 316-366.
- 14Dweck MR, Puntmann VO, Vesey AT, Fayad ZA, Nagel E. MR imaging of coronary arteries and plaques. JACC Cardiovasc Imaging 2016; 9(3): 306-316.
- 15Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M. Meta-analysis: Noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med 2010; 152(3): 167-177.
- 16Alam SR, Shah ASV, Richards J, et al. Ultrasmall superparamagnetic particles of iron oxide in patients with acute myocardial infarction. Circ Cardiovasc Imaging 2012; 5(5): 559-565.
- 17 MA3RS Study Investigators. Aortic wall inflammation predicts abdominal aortic aneurysm expansion, rupture, and need for surgical repair. Circulation 2017; 136(9): 787-797.
- 18Sadat U, Howarth SPS, Usman A, Tang TY, Graves MJ, Gillard JH. Sequential imaging of asymptomatic carotid atheroma using ultrasmall superparamagnetic iron oxide–enhanced magnetic resonance imaging: A feasibility study. J Stroke Cerebrovasc Dis 2013; 22(8): e271-e276.
- 19Zheng KH, Schoormans J, Stiekema LCA, et al. Plaque permeability assessed with DCE-MRI associates with USPIO uptake in patients with peripheral artery disease. JACC Cardiovasc Imaging 2019; 12(10): 2081-2083.
- 20Zahergivar A, Kocher M, Waltz J, et al. The diagnostic value of non-contrast magnetic resonance coronary angiography in the assessment of coronary artery disease: A systematic review and meta-analysis. Heliyon 2021; 7(3):e06386.
- 21Nakamura M, Kido T, Kido T, et al. Non-contrast compressed sensing whole-heart coronary magnetic resonance angiography at 3T: A comparison with conventional imaging. Eur J Radiol 2018; 104: 43-48.
- 22Kato Y, Ambale-Venkatesh B, Kassai Y, et al. Non-contrast coronary magnetic resonance angiography: Current frontiers and future horizons. Magn Reson Mater Phys Biol Med 2020; 33(5): 591-612.
10.1007/s10334-020-00834-8 Google Scholar
- 23Piccini D, Monney P, Sierro C, et al. Respiratory self-navigated postcontrast whole-heart coronary MR angiography: Initial experience in patients. Radiology 2014; 270(2): 378-386.
- 24Kaczynski J, Williams M, Forsythe R, et al. Early experience with 18F-fluoride positron emission tomography–magnetic resonance imaging in patients with symptomatic carotid artery stenosis undergoing carotid endarterectomy. Eur J Vasc Endovasc Surg 2019; 58(6): e845-e846.
10.1016/j.ejvs.2019.09.463 Google Scholar
- 25Fayad ZA, Fuster V. Characterization of atherosclerotic plaques by magnetic resonance imaging. Ann N Y Acad Sci 2000; 902: 173-186.
- 26Jansen CHP, Perera D, Makowski MR, et al. Detection of intracoronary thrombus by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 2011; 124(4): 416-424.
- 27Tomohiro K, Shoichi K, Nobuhiko K, et al. Characterization of hyperintense plaque with noncontrast T1-weighted cardiac magnetic resonance coronary plaque imaging. JACC Cardiovasc Imaging 2009; 2(6): 720-728.
- 28Noguchi T, Kawasaki T, Tanaka A, et al. High-intensity signals in coronary plaques on noncontrast T1-weighted magnetic resonance imaging as a novel determinant of coronary events. J Am Coll Cardiol 2014; 63(10): 989-999.
- 29Camici PG. Positron emission tomography and myocardial imaging. Heart 2000 Apr; 83(4): 475-480.
- 30Krizsan AK, Lajtos I, Dahlbom M, et al. A promising future: Comparable imaging capability of MRI-compatible silicon photomultiplier and conventional photosensor preclinical PET systems. J Nucl Med 2015; 56(12): 1948-1953.
- 31Joshi NV, Toor I, Shah ASV, et al. Systemic atherosclerotic inflammation following acute myocardial infarction: Myocardial infarction begets myocardial infarction. J Am Heart Assoc 2015; 4(9):e001956.
- 32Tahara N, Kai H, Yamagishi S, et al. Vascular inflammation evaluated by [18F]-fluorodeoxyglucose positron emission tomography is associated with the metabolic syndrome. J Am Coll Cardiol 2007; 49(14): 1533-1539.
- 33Figueroa AL, Subramanian SS, Cury RC, et al. Distribution of inflammation within carotid atherosclerotic plaques with high-risk morphological features. Circ Cardiovasc Imaging 2012; 5(1): 69-77.
- 34Tahara N, Kai H, Ishibashi M, et al. Simvastatin attenuates plaque inflammation: Evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006; 48(9): 1825-1831.
- 35Rudd JHF, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002; 105(23): 2708-2711.
- 36Vesey AT, Jenkins WSA, Irkle A, et al. (18)F-fluoride and (18)F-fluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke: Case-control study. Circ Cardiovasc Imaging 2017; 10(3):e004976.
- 37Joshi NV, Vesey AT, Williams MC, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: A prospective clinical trial. Lancet 2014; 383(9918): 705-713.
- 38Robson PM, Dweck MR, Trivieri MG, et al. Coronary artery PET/MR imaging: Feasibility, limitations, and solutions. JACC Cardiovasc Imaging 2017; 10(10, Part A): 1103-1112.
- 39Adamson PD, Vesey AT, Joshi NV, Newby DE, Dweck MR. Salt in the wound: 18F-fluoride positron emission tomography for identification of vulnerable coronary plaques. Cardiovasc Diagn Ther 2015; 5(2): 150-155.
- 40Vengrenyuk Y, Carlier S, Xanthos S, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci U S A 2006; 103(40): 14678-14683.
- 41Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med 2010; 51(12): 1826-1829.
- 42Moss AJ, Sim AM, Adamson PD, et al. Ex vivo 18F-fluoride uptake and hydroxyapatite deposition in human coronary atherosclerosis. Sci Rep 2020; 10(1):20172.
- 43Creager MD, Hohl T, Hutcheson JD, et al. 18F-fluoride signal amplification identifies microcalcifications associated with atherosclerotic plaque instability in positron emission tomography/computed tomography images. Circ Cardiovasc Imaging 2019; 12(1):e007835.
- 44Chae SY, Kwon T-W, Jin S, et al. A phase 1, first-in-human study of 18F-GP1 positron emission tomography for imaging acute arterial thrombosis. EJNMMI Res 2019; 9(1): 3.
- 45Kim C, Lee JS, Han Y, et al. Glycoprotein IIb/IIIa receptor imaging with (18)F-GP1 positron emission tomography for acute venous thromboembolism: An open-label, non-randomized, first-in-human phase 1 study. J Nucl Med 2018; 60(2): 244-249.
- 46Bing R, Deutsch M-A, Sellers SL, et al. 18F-GP1 positron emission tomography and bioprosthetic aortic valve thrombus. JACC Cardiovasc Imaging 2022; 15: 1107-1120.
- 47Tzolos E, Bing R, Newby DE, Dweck MR. Categorising myocardial infarction with advanced cardiovascular imaging. Lancet 2021; 398(10299):e9.
- 48Danad I, Raijmakers PG, Driessen RS, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol 2017; 2(10): 1100-1107.
- 49Nagel E, Greenwood JP, McCann GP, et al. Magnetic resonance perfusion or fractional flow reserve in coronary disease. N Engl J Med 2019; 380(25): 2418-2428.
- 50Garcia MJ, Kwong RY, Scherrer-Crosbie M, et al. State of the art: Imaging for myocardial viability: A scientific statement from the American Heart Association. Circ Cardiovasc Imaging 2020; 13(7):e000053.
- 51Delaney FT, Dempsey P, Welaratne I, Buckley B, O'Sullivan D, O'Connell M. Incidental cardiac uptake in bone scintigraphy: Increased importance and association with cardiac amyloidosis. BJR Case Rep 2021; 7(3):20200161.
- 52Kratochwil C, Flechsig P, Lindner T, et al. (68)Ga-FAPI PET/CT: Tracer uptake in 28 different kinds of cancer. J Nucl Med 2019; 60(6): 801-805.
- 53Heckmann MB, Reinhardt F, Finke D, et al. Relationship between cardiac fibroblast activation protein activity by positron emission tomography and cardiovascular disease. Circ Cardiovasc Imaging 2020; 13(9):e010628.
- 54Wu M, Ning J, Li J, et al. Feasibility of in vivo imaging of fibroblast activation protein in human arterial walls. J Nucl Med 2022; 63: 948-951.
- 55Tzolos E, Bing R, Andrews J, et al. In vivo coronary artery thrombus imaging with 18F-GP1 PET-CT. Eur Heart J 2021; 42(Suppl. 1):ehab724.0261.
10.1093/eurheartj/ehab724.0261 Google Scholar
- 56Velangi PS, Choo C, Chen K-HA, et al. Long-term embolic outcomes after detection of left ventricular thrombus by late gadolinium enhancement cardiovascular magnetic resonance imaging: A matched cohort study. Circ Cardiovasc Imaging 2019; 12(11):e009723.
- 57Kwiecinski J, Cadet S, Daghem M, et al. Whole-vessel coronary 18F-sodium fluoride PET for assessment of the global coronary microcalcification burden. Eur J Nucl Med Mol Imaging 2020; 47(7): 1736-1745.
- 58Brendle C, Schmidt H, Oergel A, et al. Segmentation-based attenuation correction in positron emission tomography/magnetic resonance. Invest Radiol 2015; 50(5): 339-346.
- 59Freitag MT, Fenchel M, Bäumer P, et al. Improved clinical workflow for simultaneous whole-body PET/MRI using high-resolution CAIPIRINHA-accelerated MR-based attenuation correction. Eur J Radiol 2017; 96: 12-20.
- 60Arabi H, Zaidi H. MRI-guided attenuation correction in torso PET/MRI: Assessment of segmentation-, atlas-, and deep learning-based approaches in the presence of outliers. Magn Reson Med 2022; 87(2): 686-701.
- 61Armstrong IS, Tonge CM, Arumugam P. Assessing time-of-flight signal-to-noise ratio gains within the myocardium and subsequent reductions in administered activity in cardiac PET studies. J Nucl Cardiol 2019; 26(2): 405-412.
- 62Robson PM, Trivieri MG, Karakatsanis NA, et al. Correction of respiratory and cardiac motion in cardiac PET/MR using MR-based motion modeling. Phys Med Biol 2018; 63(22):225011.
- 63Petibon Y, Sun T, Han PK, Ma C, El FG, Ouyang J. MR-based cardiac and respiratory motion correction of PET: Application to static and dynamic cardiac 18F-FDG imaging. Phys Med Biol 2019; 64(19):195009.
- 64Lassen ML, Rasul S, Beitzke D, et al. Assessment of attenuation correction for myocardial PET imaging using combined PET/MRI. J Nucl Cardiol 2019; 26(4): 1107-1118.
- 65Tarkin JM, Joshi FR, Evans NR, et al. Detection of atherosclerotic inflammation by 68Ga-DOTATATE PET compared to [18F]FDG PET imaging. J Am Coll Cardiol 2017; 69(14): 1774-1791.
- 66Tarkin JM, Calcagno C, Dweck MR, et al. (68)Ga-DOTATATE PET identifies residual myocardial inflammation and bone marrow activation after myocardial infarction. J Am Coll Cardiol 2019; 73: 2489-2491.
- 67Jenkins WSA, Vesey AT, Stirrat C, et al. Cardiac αVβ3 integrin expression following acute myocardial infarction in humans. Heart 2017; 103(8): 607-615.