Applications of PET-MRI in musculoskeletal disease
Corresponding Author
Feliks Kogan PhD
Department of Radiology, Stanford University, Stanford, California, USA
Address reprint requests to: F.K., Stanford University, Department of Radiology, 1201 Welch Road, Stanford, CA 94305. E-mail: [email protected]Search for more papers by this authorStephen M. Broski MD
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
Search for more papers by this authorDaehyun Yoon PhD
Department of Radiology, Stanford University, Stanford, California, USA
Search for more papers by this authorGarry E. Gold MD
Department of Radiology, Stanford University, Stanford, California, USA
Department of Bioengineering, Stanford University, Stanford, California, USA
Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
Search for more papers by this authorCorresponding Author
Feliks Kogan PhD
Department of Radiology, Stanford University, Stanford, California, USA
Address reprint requests to: F.K., Stanford University, Department of Radiology, 1201 Welch Road, Stanford, CA 94305. E-mail: [email protected]Search for more papers by this authorStephen M. Broski MD
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
Search for more papers by this authorDaehyun Yoon PhD
Department of Radiology, Stanford University, Stanford, California, USA
Search for more papers by this authorGarry E. Gold MD
Department of Radiology, Stanford University, Stanford, California, USA
Department of Bioengineering, Stanford University, Stanford, California, USA
Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
Search for more papers by this authorAbstract
New integrated PET-MRI systems potentially provide a complete imaging modality for diagnosis and evaluation of musculoskeletal disease. MRI is able to provide excellent high-resolution morphologic information with multiple contrast mechanisms that has made it the imaging modality of choice in evaluation of many musculoskeletal disorders. PET offers incomparable abilities to provide quantitative information about molecular and physiologic changes that often precede structural and biochemical changes. In combination, hybrid PET-MRI can enhance imaging of musculoskeletal disorders through early detection of disease as well as improved diagnostic sensitivity and specificity. The purpose of this article is to review emerging applications of PET-MRI in musculoskeletal disease. Both clinical applications of malignant musculoskeletal disease as well as new opportunities to incorporate the molecular capabilities of nuclear imaging into studies of nononcologic musculoskeletal disease are discussed. Lastly, we discuss some of the technical considerations and challenges of PET-MRI as they specifically relate to musculoskeletal disease.
Level of Evidence
5
Technical Efficacy
Stage 3 J. Magn. Reson. Imaging 2018;48:27–47.
References
- 1 Judenhofer MS, Wehrl HF, Newport DF, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 2008; 14: 459–465.
- 2 Chaudhry AA, Gul M, Gould E, Teng M, Baker K, Matthews R. Utility of positron emission tomography-magnetic resonance imaging in musculoskeletal imaging. World J Radiol 2016; 8: 268–274.
- 3 Quick HH. Integrated PET/MR. J Magn Reson Imaging 2014; 39: 243–258.
- 4 Ehman EC, Johnson GB, Villanueva-Meyer JE, et al. PET/MRI: where might it replace PET/CT? J Magn Reson Imaging 2017; 46: 1247–1262.
- 5 Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol 2015; 60: R115–R154.
- 6 Jadvar H, Colletti PM. Competitive advantage of PET/MRI. Eur J Radiol 2014; 83: 84–94.
- 7 Hofmann M, Pichler B, Scholkopf B, Beyer T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 2009; 36(Suppl 1): S93–S104.
- 8 Mehranian A, Arabi H, Zaidi H. Vision 20/20: magnetic resonance imaging-guided attenuation correction in PET/MRI: challenges, solutions, and opportunities. Med Phys 2016; 43: 1130–1155.
- 9 Fowler KJ, McConathy J, Narra VR. Whole-body simultaneous positron emission tomography (PET)-MR: optimization and adaptation of MRI sequences. J Magn Reson Imaging 2014; 39: 259–268.
- 10 Sotoudeh H, Sharma A, Fowler KJ, McConathy J, Dehdashti F. Clinical application of PET/MRI in oncology. J Magn Reson Imaging 2016; 44: 265–276.
- 11 Fraum TJ, Fowler KJ, McConathy J. PET/MRI: emerging clinical applications in oncology. Acad Radiol 2016; 23: 220–236.
- 12 Heiss WD. Hybrid PET/MR imaging in neurology: present applications and prospects for the future. J Nucl Med 2016; 57: 993–995.
- 13 Naraghi AM, White LM. Imaging of athletic injuries of knee ligaments and menisci: sports imaging series. Radiology 2016; 281: 23–40.
- 14 Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke DA. Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques. Radiology 2012; 265: 340–356.
- 15 Wehrli FW, Song HK, Saha PK, Wright AC. Quantitative MRI for the assessment of bone structure and function. NMR Biomed 2006; 19: 731–764.
- 16 Matzat SJ, Kogan F, Fong GW, Gold GE. Imaging strategies for assessing cartilage composition in osteoarthritis. Curr Rheumatol Rep 2014; 16: 462.
- 17 Kogan F, Haris M, Singh A, et al. Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer. Magn Reson Med 2014; 71: 164–172.
- 18 Wiesinger F, Sacolick LI, Menini A, et al. Zero TE MR bone imaging in the head. Magn Reson Med 2016; 75: 107–114.
- 19 Manhard MK, Nyman JS, Does MD. Advances in imaging approaches to fracture risk evaluation. Transl Res 2017; 181: 1–14.
- 20 Etchebehere EC, Hobbs BP, Milton DR, et al. Assessing the role of (1)(8)F-FDG PET and (1)(8)F-FDG PET/CT in the diagnosis of soft tissue musculoskeletal malignancies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2016; 43: 860–870.
- 21 Crymes WB Jr, Demos H, Gordon L. Detection of musculoskeletal infection with 18F-FDG PET: review of the current literature. J Nucl Med Technol 2004; 32: 12–15.
- 22 Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med 1962; 3: 332–334.
- 23 Jadvar H, Desai B, Conti PS. Sodium 18F-fluoride PET/CT of bone, joint, and other disorders. Semin Nucl Med 2015; 45: 58–65.
- 24 Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med 2010; 51: 1826–1829.
- 25 Piert M, Zittel TT, Becker GA, et al. Assessment of porcine bone metabolism by dynamic [18F]-fluoride ion PET: correlation with bone histomorphometry. J Nucl Med 2001; 42: 1091–1100.
- 26 Mick CG, James T, Hill JD, Williams P, Perry M. Molecular imaging in oncology: (18)F-sodium fluoride PET imaging of osseous metastatic disease. AJR Am J Roentgenol 2014; 203: 263–271.
- 27 Kogan F, Fan AP, Gold GE. Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease. Quant Imaging Med Surg 2016; 6: 756–771.
- 28 Brady Z, Taylor ML, Haynes M, et al. The clinical application of PET/CT: a contemporary review. Australas Phys Eng Sci Med 2008; 31: 90–109.
- 29 Buchbender C, Heusner TA, Lauenstein TC, Bockisch A, Antoch G. Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. J Nucl Med 2012; 53: 1244–1252.
- 30 Kransdorf MJ, Murphey MD. Imaging of soft-tissue musculoskeletal masses: fundamental concepts. Radiographics 2016; 36: 1931–1948.
- 31 Manaster BJ. Soft-tissue masses: optimal imaging protocol and reporting. AJR Am J Roentgenol 2013; 201: 505–514.
- 32 Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Kim EE. Bone and soft-tissue sarcoma: preoperative staging with fluorine 18 fluorodeoxyglucose PET/CT and conventional imaging. Radiology 2007; 245: 839–847.
- 33 Yokouchi M, Terahara M, Nagano S, et al. Clinical implications of determination of safe surgical margins by using a combination of CT and 18FDG-positron emission tomography in soft tissue sarcoma. BMC Musculoskelet Disord 2011; 12: 166.
- 34 Ahlawat S, Fayad LM. Diffusion weighted imaging demystified: the technique and potential clinical applications for soft tissue imaging. Skeletal Radiol 2018; 47: 313–328.
- 35 Fisher SM, Joodi R, Madhuranthakam AJ, Oz OK, Sharma R, Chhabra A. Current utilities of imaging in grading musculoskeletal soft tissue sarcomas. Eur J Radiol 2016; 85: 1336–1344.
- 36 Zhang X, Chen YL, Lim R, Huang C, Chebib IA, El Fakhri G. Synergistic role of simultaneous PET/MRI-MRS in soft tissue sarcoma metabolism imaging. Magn Reson Imaging 2016; 34: 276–279.
- 37 Vallieres M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 2015; 60: 5471–5496.
- 38 Andersen KF, Fuglo HM, Rasmussen SH, Petersen MM, Loft A. Volume-based F-18 FDG PET/CT imaging markers provide supplemental prognostic information to histologic grading in patients with high-grade bone or soft tissue sarcoma. Medicine (Baltimore) 2015; 94: e2319.
- 39 Choi ES, Ha SG, Kim HS, Ha JH, Paeng JC, Han I. Total lesion glycolysis by 18F-FDG PET/CT is a reliable predictor of prognosis in soft-tissue sarcoma. Eur J Nucl Med Mol Imaging 2013; 40: 1836–1842.
- 40 Costelloe CM, Macapinlac HA, Madewell JE, et al. 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med 2009; 50: 340–347.
- 41 Fuglo HM, Jorgensen SM, Loft A, Hovgaard D, Petersen MM. The diagnostic and prognostic value of (1)(8)F-FDG PET/CT in the initial assessment of high-grade bone and soft tissue sarcoma. A retrospective study of 89 patients. Eur J Nucl Med Mol Imaging 2012; 39: 1416–1424.
- 42 Hong SP, Lee SE, Choi YL, et al. Prognostic value of 18F-FDG PET/CT in patients with soft tissue sarcoma: comparisons between metabolic parameters. Skeletal Radiol 2014; 43: 641–648.
- 43 Kubo T, Furuta T, Johan MP, Ochi M. Prognostic significance of (18)F-FDG PET at diagnosis in patients with soft tissue sarcoma and bone sarcoma; systematic review and meta-analysis. Eur J Cancer 2016; 58: 104–111.
- 44 Nanni C, Gasbarrini A, Cappelli A, et al. FDG PET/CT for bone and soft-tissue biopsy. Eur J Nucl Med Mol Imaging 2015; 42: 1333–1334.
- 45 Burningham Z, Hashibe M, Spector L, Schiffman JD. The epidemiology of sarcoma. Clin Sarcoma Res 2012; 2: 14.
- 46 Kandathil A, Subramaniam RM. PET/computed tomography and precision medicine: musculoskeletal sarcoma. PET Clin 2017; 12: 475–488.
- 47 Tateishi U, Hosono A, Makimoto A, et al. Comparative study of FDG PET/CT and conventional imaging in the staging of rhabdomyosarcoma. Ann Nucl Med 2009; 23: 155–161.
- 48 Volker T, Denecke T, Steffen I, et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 2007; 25: 5435–5441.
- 49 Kneisl JS, Patt JC, Johnson JC, Zuger JH. Is PET useful in detecting occult nonpulmonary metastases in pediatric bone sarcomas? Clin Orthop Relat Res 2006; 450: 101–104.
- 50 Tabacchi E, Fanti S, Nanni C. The possible role of PET imaging toward individualized management of bone and soft tissue malignancies. PET Clin 2016; 11: 285–296.
- 51 Iagaru A, Chawla S, Menendez L, Conti PS. 18F-FDG PET and PET/CT for detection of pulmonary metastases from musculoskeletal sarcomas. Nucl Med Commun 2006; 27: 795–802.
- 52 Loft A, Jensen KE, Lofgren J, Daugaard S, Petersen MM. PET/MRI for preoperative planning in patients with soft tissue sarcoma: a technical report of two patients. Case Rep Med 2013; 2013: 791078.
- 53 Partovi S, Kohan AA, Zipp L, et al. Hybrid PET/MR imaging in two sarcoma patients - clinical benefits and implications for future trials. Int J Clin Exp Med 2014; 7: 640–648.
- 54 Schuler MK, Richter S, Beuthien-Baumann B, et al. PET/MRI imaging in high-risk sarcoma: first findings and solving clinical problems. Case Rep Oncol Med 2013; 2013: 793927.
- 55 Benz MR, Czernin J, Allen-Auerbach MS, et al. FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of neoadjuvant chemotherapy in high-grade soft-tissue sarcomas. Clin Cancer Res 2009; 15: 2856–2863.
- 56 Kong CB, Byun BH, Lim I, et al. (1)(8)F-FDG PET SUVmax as an indicator of histopathologic response after neoadjuvant chemotherapy in extremity osteosarcoma. Eur J Nucl Med Mol Imaging 2013; 40: 728–736.
- 57 Byun BH, Kong CB, Lim I, et al. Combination of 18F-FDG PET/CT and diffusion-weighted MR imaging as a predictor of histologic response to neoadjuvant chemotherapy: preliminary results in osteosarcoma. J Nucl Med 2013; 54: 1053–1059.
- 58 Schuler MK, Platzek I, Beuthien-Baumann B, Fenchel M, Ehninger G, van den Hoff J. (18)F-FDG PET/MRI for therapy response assessment in sarcoma: comparison of PET and MR imaging results. Clin Imaging 2015; 39: 866–870.
- 59 Erfanian Y, Grueneisen J, Kirchner J, et al. Integrated 18F-FDG PET/MRI compared to MRI alone for identification of local recurrences of soft tissue sarcomas: a comparison trial. Eur J Nucl Med Mol Imaging 2017; 44: 1823–1831.
- 60 Franzius C, Daldrup-Link HE, Wagner-Bohn A, et al. FDG-PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging. Ann Oncol 2002; 13: 157–160.
- 61 Arush MWB, Israel O, Postovsky S, et al. Positron emission tomography/computed tomography with (18)fluoro-deoxyglucose in the detection of local recurrence and distant metastases of pediatric sarcoma. Pediatr Blood Cancer 2007; 49: 901–905.
- 62 Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014; 15: e538–e548.
- 63 Dimopoulos MA, Hillengass J, Usmani S, et al. Role of magnetic resonance imaging in the management of patients with multiple myeloma: a consensus statement. J Clin Oncol 2015; 33: 657–664.
- 64 Cavo M, Terpos E, Nanni C, et al. Role of (18)F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group. Lancet Oncol 2017; 18: e206–e217.
- 65 Dingli D, Ailawadhi S, Bergsagel PL, et al. Therapy for relapsed multiple myeloma: guidelines from the mayo stratification for myeloma and risk-adapted therapy. Mayo Clin Proc 2017; 92: 578–598.
- 66 Walker R, Barlogie B, Haessler J, et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol 2007; 25: 1121–1128.
- 67 Chantry A, Kazmi M, Barrington S, et al. Guidelines for the use of imaging in the management of patients with myeloma. Br J Haematol 2017; 178: 380–393.
- 68 Regelink JC, Minnema MC, Terpos E, et al. Comparison of modern and conventional imaging techniques in establishing multiple myeloma-related bone disease: a systematic review. Br J Haematol 2013; 162: 50–61.
- 69 Baur-Melnyk A, Buhmann S, Becker C, et al. Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. AJR Am J Roentgenol 2008; 190: 1097–1104.
- 70 Zamagni E, Nanni C, Patriarca F, et al. A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica 2007; 92: 50–55.
- 71 Waheed S, Mitchell A, Usmani S, et al. Standard and novel imaging methods for multiple myeloma: correlates with prognostic laboratory variables including gene expression profiling data. Haematologica 2013; 98: 71–78.
- 72 Dutoit JC, Vanderkerken MA, Anthonissen J, Dochy F, Verstraete KL. The diagnostic value of SE MRI and DWI of the spine in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma. Eur Radiol 2014; 24: 2754–2765.
- 73 Squillaci E, Bolacchi F, Altobelli S, et al. Pre-treatment staging of multiple myeloma patients: comparison of whole-body diffusion weighted imaging with whole-body T1-weighted contrast-enhanced imaging. Acta Radiol 2015; 56: 733–738.
- 74 Messiou C, Collins DJ, Morgan VA, Desouza NM. Optimising diffusion weighted MRI for imaging metastatic and myeloma bone disease and assessing reproducibility. Eur Radiol 2011; 21: 1713–1718.
- 75 Koutoulidis V, Fontara S, Terpos E, et al. Quantitative diffusion-weighted imaging of the bone marrow: an adjunct tool for the diagnosis of a diffuse MR imaging pattern in patients with multiple myeloma. Radiology 2017; 282: 484–493.
- 76 Hillengass J, Fechtner K, Weber MA, et al. Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol 2010; 28: 1606–1610.
- 77 Kastritis E, Moulopoulos LA, Terpos E, Koutoulidis V, Dimopoulos MA. The prognostic importance of the presence of more than one focal lesion in spine MRI of patients with asymptomatic (smoldering) multiple myeloma. Leukemia 2014; 28: 2402–2403.
- 78 Baur-Melnyk A, Buhmann S, Durr HR, Reiser M. Role of MRI for the diagnosis and prognosis of multiple myeloma. Eur J Radiol 2005; 55: 56–63.
- 79 Song MK, Chung JS, Lee JJ, et al. Magnetic resonance imaging pattern of bone marrow involvement as a new predictive parameter of disease progression in newly diagnosed patients with multiple myeloma eligible for autologous stem cell transplantation. Br J Haematol 2014; 165: 777–785.
- 80 Giles SL, Messiou C, Collins DJ, et al. Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma. Radiology 2014; 271: 785–794.
- 81 Sager S, Ergul N, Ciftci H, Cetin G, Guner SI, Cermik TF. The value of FDG PET/CT in the initial staging and bone marrow involvement of patients with multiple myeloma. Skeletal Radiol 2011; 40: 843–847.
- 82 Lu YY, Chen JH, Lin WY, et al. FDG PET or PET/CT for detecting intramedullary and extramedullary lesions in multiple Myeloma: a systematic review and meta-analysis. Clin Nucl Med 2012; 37: 833–837.
- 83 Rajkumar SV. Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol 2016; 91: 719–734.
- 84 Bartel TB, Haessler J, Brown TL, et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 2009; 114: 2068–2076.
- 85 Zamagni E, Patriarca F, Nanni C, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood 2011; 118: 5989–5995.
- 86 Zamagni E, Nanni C, Gay F, et al. 18F-FDG PET/CT focal, but not osteolytic, lesions predict the progression of smoldering myeloma to active disease. Leukemia 2016; 30: 417–422.
- 87 Siontis B, Kumar S, Dispenzieri A, et al. Positron emission tomography-computed tomography in the diagnostic evaluation of smoldering multiple myeloma: identification of patients needing therapy. Blood Cancer J 2015; 5: e364.
- 88 Caldarella C, Treglia G, Isgro MA, Treglia I, Giordano A. The role of fluorine-18-fluorodeoxyglucose positron emission tomography in evaluating the response to treatment in patients with multiple myeloma. Int J Mol Imaging 2012; 2012: 175803.
- 89 Spinnato P, Bazzocchi A, Brioli A, et al. Contrast enhanced MRI and (1)(8)F-FDG PET-CT in the assessment of multiple myeloma: a comparison of results in different phases of the disease. Eur J Radiol 2012; 81: 4013–4018.
- 90 Derlin T, Peldschus K, Munster S, et al. Comparative diagnostic performance of (1)(8)F-FDG PET/CT versus whole-body MRI for determination of remission status in multiple myeloma after stem cell transplantation. Eur Radiol 2013; 23: 570–578.
- 91 Zamagni E, Nanni C, Mancuso K, et al. PET/CT improves the definition of complete response and allows to detect otherwise unidentifiable skeletal progression in multiple myeloma. Clin Cancer Res 2015; 21: 4384–4390.
- 92 Shortt CP, Gleeson TG, Breen KA, et al. Whole-body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol 2009; 192: 980–986.
- 93 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017; 67: 7–30.
- 94 Talbot JN, Paycha F, Balogova S. Diagnosis of bone metastasis: recent comparative studies of imaging modalities. Q J Nucl Med Mol Imaging 2011; 55: 374–410.
- 95 Yang HL, Liu T, Wang XM, Xu Y, Deng SM. Diagnosis of bone metastases: a meta-analysis comparing (1)(8)FDG PET, CT, MRI and bone scintigraphy. Eur Radiol 2011; 21: 2604–2617.
- 96 Li B, Li Q, Nie W, Liu S. Diagnostic value of whole-body diffusion-weighted magnetic resonance imaging for detection of primary and metastatic malignancies: a meta-analysis. Eur J Radiol 2014; 83: 338–344.
- 97 Beiderwellen K, Huebner M, Heusch P, et al. Whole-body [(1)(8)F]FDG PET/MRI vs. PET/CT in the assessment of bone lesions in oncological patients: initial results. Eur Radiol 2014; 24: 2023–2030.
- 98 Samarin A, Hullner M, Queiroz MA, et al. 18F-FDG-PET/MR increases diagnostic confidence in detection of bone metastases compared with 18F-FDG-PET/CT. Nucl Med Commun 2015; 36: 1165–1173.
- 99 Catalano OA, Nicolai E, Rosen BR, et al. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients. Br J Cancer 2015; 112: 1452–1460.
- 100 Freitag MT, Radtke JP, Hadaschik BA, et al. Comparison of hybrid (68)Ga-PSMA PET/MRI and (68)Ga-PSMA PET/CT in the evaluation of lymph node and bone metastases of prostate cancer. Eur J Nucl Med Mol Imaging 2016; 43: 70–83.
- 101 Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol 2014; 10: 437–441.
- 102 Potter HG, Koff MF. MR imaging tools to assess cartilage and joint structures. HSS J 2012; 8: 29–32.
- 103 Li Q, Amano K, Link TM, Ma CB. Advanced imaging in osteoarthritis. Sports Health 2016; 8: 418–428.
- 104 Kogan F, Hargreaves BA, Gold GE. Volumetric multislice gagCEST imaging of articular cartilage: optimization and comparison with T1rho. Magn Reson Med 2017; 77: 1134–1141.
- 105 Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol 2012; 8: 665–673.
- 106 Hayami T, Pickarski M, Wesolowski GA, et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum 2004; 50: 1193–1206.
- 107 Kobayashi N, Inaba Y, Tateishi U, et al. Comparison of 18F-fluoride positron emission tomography and magnetic resonance imaging in evaluating early-stage osteoarthritis of the hip. Nucl Med Commun 2015; 36: 84–89.
- 108 Draper CE, Fredericson M, Gold GE, et al. Patients with patellofemoral pain exhibit elevated bone metabolic activity at the patellofemoral joint. J Orthop Res 2012; 30: 209–213.
- 109 Kogan F, Fan AP, McWalter EJ, Oei EHG, Quon A, Gold GE. PET/MRI of metabolic activity in osteoarthritis: a feasibility study. J Magn Reson Imaging 2017; 45: 1736–1745.
- 110 Kogan F, Fan AP, Monu UD, Iagaru A, Hargreaves BA, Gold GE. Quantitative imaging of bone-cartilage interactions in ACL-injured patients with PET-MRI. Osteoarthritis Cartilage 2018 doi: 10.1016/j.joca.2018.04.001.
- 111 Hunter D, Guermazi A, Lo G, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 2011; 19: 990–1002.
- 112 Savic D, Pedoia V, Seo Y, et al. Imaging bone-cartilage interactions in osteoarthritis using [18F]-NaF PET-MRI. Mol Imaging 2016; 15: 1–12.
- 113 Nakamura H, Masuko K, Yudoh K, et al. Positron emission tomography with 18F-FDG in osteoarthritic knee. Osteoarthritis Cartilage 2007; 15: 673–681.
- 114 Wandler E, Kramer EL, Sherman O, Babb J, Scarola J, Rafii M. Diffuse FDG shoulder uptake on PET is associated with clinical findings of osteoarthritis. AJR Am J Roentgenol 2005; 185: 797–803.
- 115 Nam JL, Takase-Minegishi K, Ramiro S, et al. Efficacy of biological disease-modifying antirheumatic drugs: a systematic literature review informing the 2016 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis 2017; 76: 1113–1136.
- 116 Colebatch AN, Edwards CJ, Ostergaard M, et al. EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis. Ann Rheum Dis 2013; 72: 804–814.
- 117 Hetland ML, Ejbjerg B, Horslev-Petersen K, et al. MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA). Ann Rheum Dis 2009; 68: 384–390.
- 118 Ostergaard M, Jacobsson LT, Schaufelberger C, et al. MRI assessment of early response to certolizumab pegol in rheumatoid arthritis: a randomised, double-blind, placebo-controlled phase IIIb study applying MRI at weeks 0, 1, 2, 4, 8 and 16. Ann Rheum Dis 2015; 74: 1156–1163.
- 119 Beckers C, Ribbens C, Andre B, et al. Assessment of disease activity in rheumatoid arthritis with (18)F-FDG PET. J Nucl Med 2004; 45: 956–964.
- 120 Kubota K, Ito K, Morooka M, et al. Whole-body FDG-PET/CT on rheumatoid arthritis of large joints. Ann Nucl Med 2009; 23: 783–791.
- 121 Roivainen A, Hautaniemi S, Mottonen T, et al. Correlation of 18F-FDG PET/CT assessments with disease activity and markers of inflammation in patients with early rheumatoid arthritis following the initiation of combination therapy with triple oral antirheumatic drugs. Eur J Nucl Med Mol Imaging 2013; 40: 403–410.
- 122 Roivainen A, Parkkola R, Yli-Kerttula T, et al. Use of positron emission tomography with methyl-11C-choline and 2-18F-fluoro-2-deoxy-D-glucose in comparison with magnetic resonance imaging for the assessment of inflammatory proliferation of synovium. Arthritis Rheum 2003; 48: 3077–3084.
- 123 van der Laken CJ, Elzinga EH, Kropholler MA, et al. Noninvasive imaging of macrophages in rheumatoid synovitis using 11C-(R)-PK11195 and positron emission tomography. Arthritis Rheum 2008; 58: 3350–3355.
- 124 Miese F, Scherer A, Ostendorf B, et al. Hybrid 18F-FDG PET-MRI of the hand in rheumatoid arthritis: initial results. Clin Rheumatol 2011; 30: 1247–1250.
- 125 Task Force on Taxonomy of the International Association for the Study of Pain. In: H Merskey, N Bogduk, editors. Classification of chronic pain. Seattle: IASP Press; 1994. p 209–214.
- 126 DiBonaventura MD, Sadosky A, Concialdi K, et al. The prevalence of probable neuropathic pain in the US: results from a multimodal general-population health survey. J Pain Res 2017; 10: 2525–2538.
- 127 Haig AJ, Yamakawa K, Kendall R, Miner J, Parres CM, Harris M. Assessment of the validity of masking in electrodiagnostic research. Am J Phys Med Rehabil 2006; 85: 475–481.
- 128 Chhabra A, Andreisek G, Soldatos T, et al. MR neurography: past, present, and future. AJR Am J Roentgenol 2011; 197: 583–591.
- 129 Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D, Ross JS. Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 1994; 331: 69–73.
- 130 Behera D, Jacobs KE, Behera S, Rosenberg J, Biswal S. (18)F-FDG PET/MRI can be used to identify injured peripheral nerves in a model of neuropathic pain. J Nucl Med 2011; 52: 1308–1312.
- 131 James ML, Shen B, Nielsen CH, et al. Evaluation of sigma-1 receptor radioligand 18F-FTC-146 in rats and squirrel monkeys using PET. J Nucl Med 2014; 55: 147–153.
- 132 Shen B, Behera D, James ML, et al. Visualizing nerve injury in a neuropathic pain model with [(18)F]FTC-146 PET/MRI. Theranostics 2017; 7: 2794–2805.
- 133 Zamanillo D, Romero L, Merlos M, Vela JM. Sigma 1 receptor: a new therapeutic target for pain. Eur J Pharmacol 2013; 716: 78–93.
- 134 Hjornevik T, Cipriano PW, Shen B, et al. Biodistribution and radiation dosimetry of (18)F-FTC-146 in humans. J Nucl Med 2017; 58: 2004–2009.
- 135 Yoon D, Cipriano P, Hjoernevik T, et al. Management of complex regional pain syndrome (CRPS) with [18F]FTC-146 PET/MRI. In: Proceedings of the 25th Annual Meeting of ISMRM, Honolulu, 2017. (abstract 1164).
- 136 Kurata S, Shizukuishi K, Tateishi U, et al. Age-related changes in pre- and postmenopausal women investigated with 18F-fluoride PET--a preliminary study. Skeletal Radiol 2012; 41: 947–953.
- 137 Frost ML, Siddique M, Blake GM, et al. Differential effects of teriparatide on regional bone formation using (18)F-fluoride positron emission tomography. J Bone Miner Res 2011; 26: 1002–1011.
- 138 McHugh C, Raynor W, Werner T, Alavi A, Rajapakse C. Quantification of bone metabolism in the hip and spine using PET/MRI/CT. J Nucl Med 2017; 58(Suppl 1): 1225.
- 139 Manhard MK, Horch RA, Gochberg DF, Nyman JS, Does MD. In vivo quantitative MR imaging of bound and pore water in cortical bone. Radiology 2015; 277: 221–229.
- 140 Li C, Seifert AC, Rad HS, et al. Cortical bone water concentration: dependence of MR imaging measures on age and pore volume fraction. Radiology 2016; 280: 653.
- 141 Lee YJ, Sadigh S, Mankad K, Kapse N, Rajeswaran G. The imaging of osteomyelitis. Quant Imaging Med Surg 2016; 6: 184–198.
- 142 Demirev A, Weijers R, Geurts J, Mottaghy F, Walenkamp G, Brans B. Comparison of [18 F]FDG PET/CT and MRI in the diagnosis of active osteomyelitis. Skeletal Radiol 2014; 43: 665–672.
- 143 Fahnert J, Purz S, Jarvers JS, et al. Use of Simultaneous 18F-FDG PET/MRI for the Detection of Spondylodiskitis. J Nucl Med 2016; 57: 1396–1401.
- 144 Haddock B, Holm S, Poulsen JM, et al. Assessment of muscle function using hybrid PET/MRI: comparison of (18)F-FDG PET and T2-weighted MRI for quantifying muscle activation in human subjects. Eur J Nucl Med Mol Imaging 2017; 44: 704–711.
- 145 Cronlein M, Rauscher I, Beer AJ, et al. Visualization of stress fractures of the foot using PET-MRI: a feasibility study. Eur J Med Res 2015; 20: 99.
- 146 Rauscher I, Beer AJ, Schaeffeler C, et al. Evaluation of 18F-fluoride PET/MR and PET/CT in patients with foot pain of unclear cause. J Nucl Med 2015; 56: 430–435.
- 147 Peng BH, Levin CS. Recent development in PET instrumentation. Curr Pharm Biotechnol 2010; 11: 555–571.
- 148 Samarin A, Burger C, Wollenweber SD, et al. PET/MR imaging of bone lesions--implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging 2012; 39: 1154–1160.
- 149 Leynes AP, Yang J, Shanbhag DD, et al. Hybrid ZTE/Dixon MR-based attenuation correction for quantitative uptake estimation of pelvic lesions in PET/MRI. Med Phys 2017; 44: 902–913.
- 150 Leynes AP, Yang J, Wiesinger F, et al. Direct pseudoCT generation for pelvis PET/MRI attenuation correction using deep convolutional neural networks with multi-parametric MRI: Zero Echo-time and Dixon Deep pseudoCT (ZeDD-CT). J Nucl Med 2018; 59: 852–858.
- 151 Hofmann M, Steinke F, Scheel V, et al. MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 2008; 49: 1875–1883.
- 152 Paulus DH, Tellmann L, Quick HH. Towards improved hardware component attenuation correction in PET/MR hybrid imaging. Phys Med Biol 2013; 58: 8021–8040.
- 153 Wagenknecht G, Kaiser HJ, Mottaghy FM, Herzog H. MRI for attenuation correction in PET: methods and challenges. MAGMA 2013; 26: 99–113.
- 154 Eldib M, Bini J, Calcagno C, Robson PM, Mani V, Fayad ZA. Attenuation correction for flexible magnetic resonance coils in combined magnetic resonance/positron emission tomography imaging. Invest Radiol 2014; 49: 63–69.
- 155 Frohwein LJ, Hess M, Schlicher D, et al. PET attenuation correction for flexible MRI surface coils in hybrid PET/MRI using a 3D depth camera. Phys Med Biol 2018; 63: 025033.
- 156 Eldib M, Bini J, Robson PM, et al. Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging. Phys Med Biol 2015; 60: 4705–4717.
- 157 Sander CY, Keil B, Chonde DB, Rosen BR, Catana C, Wald LL. A 31-channel MR brain array coil compatible with positron emission tomography. Magn Reson Med 2015; 73: 2363–2375.
- 158 Agency for Helathcare Research and Quality. HCUPnet, Healthcare Cost and Utilization Project January 2013. Rockville, MD: AHRQ.
- 159 Koch KM, Brau AC, Chen W, et al. Imaging near metal with a MAVRIC-SEMAC hybrid. Magn Reson Med 2011; 65: 71–82.
- 160 Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: Slice Encoding for Metal Artifact Correction in MRI. Magn Reson Med 2009; 62: 66–76.
- 161 Fuin N, Pedemonte S, Catalano OA, et al. PET/MRI in the presence of metal implants: completion of the attenuation map from PET emission data. J Nucl Med 2017; 58: 840–845.
- 162 Burger IA, Wurnig MC, Becker AS, et al. Hybrid PET/MR imaging: an algorithm to reduce metal artifacts from dental implants in Dixon-based attenuation map generation using a multiacquisition variable-resonance image combination sequence. J Nucl Med 2015; 56: 93–97.
- 163 Gunzinger JM, Delso G, Boss A, et al. Metal artifact reduction in patients with dental implants using multispectral three-dimensional data acquisition for hybrid PET/MRI. EJNMMI Phys 2014; 1: 102.
- 164 Yoon D, Khalighi M, Shi X, et al. Robust MR-based attenuation correction for PET near metal implants. In: Proceedings of the 26th Annual Meeting of ISMRM, Paris 2018. (abstract 3690).
- 165 Kinahan PE, Fletcher JW. Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy. Semin Ultrasound CT MR 2010; 31: 496–505.
- 166 Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009; 50(Suppl 1): 11S–20S.
- 167 Bentourkia M, Zaidi H. Tracer kinetic modeling in PET. PET Clin 2007; 2: 267–277.
- 168 Blake GM, Siddique M, Frost ML, Moore AE, Fogelman I. Quantitative PET imaging using (18)F sodium fluoride in the assessment of metabolic bone diseases and the monitoring of their response to therapy. PET Clin 2012; 7: 275–291.
- 169 Khalighi MM, Fan A, Delso G, et al. Image-based arterial input function estimation for cerebral blood flow measurement on a PET/MR scanner. J Nucl Med 2016; 57(Suppl 2): 1627.