Nanoparticles containing β-cyclodextrin potentially useful for the treatment of Niemann-Pick C
Bruna Donida
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorMarco Raabe
Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
Search for more papers by this authorBárbara Tauffner
Programa de Pós Graduação em Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorMarcelo A. de Farias
Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
Search for more papers by this authorAndryele Z. Machado
Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
Search for more papers by this authorFernanda Timm
Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
Search for more papers by this authorRejane G. Kessler
Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
Search for more papers by this authorTatiane G. Hammerschmidt
Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorLuiza S. Reinhardt
Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
Search for more papers by this authorVerônica B. Brito
Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
Departamento de Fisioterapia, Faculdades Integradas de Taquara (FACCAT), Taquara, Brazil
Search for more papers by this authorRodrigo V. Portugal
Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
Search for more papers by this authorAndressa Bernardi
Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
Search for more papers by this authorRudimar Frozza
Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
Search for more papers by this authorDinara J. Moura
Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
Search for more papers by this authorCorresponding Author
Roberto Giugliani
Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Correspondence
Carmen R. Vargas and Roberto Giugliani, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, 2350, 3rd Floor, Porto Alegre, RS 90035-903, Brazil.
Email: [email protected] (C. R. V), [email protected] (R. G.)
Fernanda Poletto, Department of Organic Chemistry, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 9500 Avenida Bento Gonçalves, Porto Alegre, RS 91501-970, Brazil.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Fernanda Poletto
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Programa de Pós Graduação em Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Correspondence
Carmen R. Vargas and Roberto Giugliani, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, 2350, 3rd Floor, Porto Alegre, RS 90035-903, Brazil.
Email: [email protected] (C. R. V), [email protected] (R. G.)
Fernanda Poletto, Department of Organic Chemistry, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 9500 Avenida Bento Gonçalves, Porto Alegre, RS 91501-970, Brazil.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Carmen R. Vargas
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
Correspondence
Carmen R. Vargas and Roberto Giugliani, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, 2350, 3rd Floor, Porto Alegre, RS 90035-903, Brazil.
Email: [email protected] (C. R. V), [email protected] (R. G.)
Fernanda Poletto, Department of Organic Chemistry, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 9500 Avenida Bento Gonçalves, Porto Alegre, RS 91501-970, Brazil.
Email: [email protected]
Search for more papers by this authorBruna Donida
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorMarco Raabe
Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
Search for more papers by this authorBárbara Tauffner
Programa de Pós Graduação em Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorMarcelo A. de Farias
Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
Search for more papers by this authorAndryele Z. Machado
Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
Search for more papers by this authorFernanda Timm
Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
Search for more papers by this authorRejane G. Kessler
Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
Search for more papers by this authorTatiane G. Hammerschmidt
Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Search for more papers by this authorLuiza S. Reinhardt
Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
Search for more papers by this authorVerônica B. Brito
Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
Departamento de Fisioterapia, Faculdades Integradas de Taquara (FACCAT), Taquara, Brazil
Search for more papers by this authorRodrigo V. Portugal
Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
Search for more papers by this authorAndressa Bernardi
Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
Search for more papers by this authorRudimar Frozza
Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
Search for more papers by this authorDinara J. Moura
Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
Search for more papers by this authorCorresponding Author
Roberto Giugliani
Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Correspondence
Carmen R. Vargas and Roberto Giugliani, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, 2350, 3rd Floor, Porto Alegre, RS 90035-903, Brazil.
Email: [email protected] (C. R. V), [email protected] (R. G.)
Fernanda Poletto, Department of Organic Chemistry, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 9500 Avenida Bento Gonçalves, Porto Alegre, RS 91501-970, Brazil.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Fernanda Poletto
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Programa de Pós Graduação em Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Correspondence
Carmen R. Vargas and Roberto Giugliani, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, 2350, 3rd Floor, Porto Alegre, RS 90035-903, Brazil.
Email: [email protected] (C. R. V), [email protected] (R. G.)
Fernanda Poletto, Department of Organic Chemistry, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 9500 Avenida Bento Gonçalves, Porto Alegre, RS 91501-970, Brazil.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Carmen R. Vargas
Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
Correspondence
Carmen R. Vargas and Roberto Giugliani, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, 2350, 3rd Floor, Porto Alegre, RS 90035-903, Brazil.
Email: [email protected] (C. R. V), [email protected] (R. G.)
Fernanda Poletto, Department of Organic Chemistry, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 9500 Avenida Bento Gonçalves, Porto Alegre, RS 91501-970, Brazil.
Email: [email protected]
Search for more papers by this authorFunding information: Conselho Nacional de Desenvolvimento Científico e Tecnológico, Grant/Award Numbers: 141552/2015-8, 401859/2015-0; Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Grant/Award Number: 26/203.195/2016; Fundo de Incentivo à Pesquisa e Eventos, Grant/Award Number: 15-0468; Mercosur Structural Convergence Fund, Grant/Award Number: #03/11
Abstract
β-Cyclodextrin (β-CD) is being considered a promising therapy for Niemann-Pick C (NPC) disease because of its ability to mobilise the entrapped cholesterol from lysosomes, however, a major limitation is its inability to cross the blood-brain barrier (BBB) and address the central nervous system (CNS) manifestations of the disease. Considering this, we aimed to design nanoparticles able to cross the BBB and deliver β-CD into the CNS lysosomes. The physicochemical characteristics of β-CD-loaded nanoparticles were evaluated by dynamic light scattering, small-angle X-ray scattering, and cryogenic transmission electron microscopy. The in vitro analyses were performed with NPC dermal fibroblasts and the β-CD-loaded nanoparticles were tracked in vivo. The nanoparticles showed a mean diameter around 120 nm with a disordered bicontinuous inner structure. The nanoparticles did not cause decrease in cell viability, impairment in the antioxidant enzymes activity, damage to biomolecules or release of reactive species in NPC dermal fibroblasts; also, they did not induce genotoxicity or alter the mitochondrial function in healthy fibroblasts. The β-CD-loaded nanoparticles were taken up by lysosomes reducing the cholesterol accumulated in NPC fibroblasts and reached the CNS of mice more intensely than other organs, demonstrating advantages compared to the free β-CD. The results demonstrated the potential of the β-CD-loaded nanoparticles in reducing the brain impairment of NPC.
CONFLICT OF INTEREST
All authors declare that they have no conflict of interest.
Supporting Information
Filename | Description |
---|---|
jimd12210-sup-0001-FigureS1.JPGJPEG image, 137.8 KB | Figure S1. |
jimd12210-sup-0002-FigureS2.JPGJPEG image, 141.4 KB | Figure S2. |
jimd12210-sup-0003-FigureS3.JPGJPEG image, 139.5 KB | Figure S3. |
jimd12210-sup-0004-FigureS4.JPGJPEG image, 139.8 KB | Figure S4. |
jimd12210-sup-0005-FigureS5.JPGJPEG image, 140 KB | Figure S5. |
jimd12210-sup-0006-FigureS6.JPGJPEG image, 140.2 KB | Figure S6. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Wassif CA, Cross JL, Iben J, et al. High incidence of unrecognized visceral/neurological late-onset Niemann-Pick disease, type C1, predicted by analysis of massively parallel sequencing data sets. Genet Med. 2016; 18: 41-48.
- 2Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis. 2010; 5: 16.
- 3Abi-Mosleh L, Infante RE, Radhakrishnan A, Goldstein JL, Brown MS. Cyclodextrin overcomes deficient lysosome-to-endoplasmic reticulum transport of cholesterol in Niemann-Pick type C cells. Proc Natl Acad Sci. 2009; 106: 19316-19321.
- 4Davidson CD, Ali NF, Micsenyi MC, et al. Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One. 2009; 4:e6951.
- 5Vance JE, Karten B. Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin. J Lipid Res. 2014; 55(8):R047837.
- 6Ward S, O'donnell P, Fernandez S, Vite CH. 2-Hydroxypropyl-β-cyclodextrin raises hearing threshold in normal cats and in cats with Niemann-Pick type C disease. Pediatr Res. 2010; 68: 52-56.
- 7Pontikis CC, Davidson CD, Walkley SU, Platt FM, Begley DJ. Cyclodextrin alleviates neuronal storage of cholesterol in Niemann-Pick C disease without evidence of detectable blood-brain barrier permeability. J Inherit Metab Dis. 2013; 36: 491-498.
- 8Camargo F, Erickson RP, Garver WS, et al. Cyclodextrins in the treatment of a mouse model of Niemann-Pick C disease. Life Sci. 2001; 70: 131-142.
- 9Binkowski-Machut C, Hapiot F, Martin P, Cecchelli R, Monflier E. How cyclodextrins can mask their toxic effect on the blood-brain barrier. Bioorg Med Chem Lett. 2006; 16: 1784-1787.
- 10Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008; 4: 26-49.
- 11Hwang JH, Kim SJ, Kim YH, et al. Susceptibility to gold nanoparticle-induced hepatotoxicity is enhanced in a mouse model of nonalcoholic steatohepatitis. Toxicology. 2012; 294: 27-35.
- 12Wang R, Song B, Wu J, Zhang Y, Chen A, Shao L. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine. 2018; 13: 8487-8506.
- 13Li Y, Zhang Y, Yan B. Nanotoxicity overview: nano-threat to susceptible populations. Int J Mol Sci. 2014; 15: 3671-3697.
- 14Bakand S, Hayes A, Dechsakulthorn F. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol. 2012; 24: 125-135.
- 15Chatterjee S, Kumari RM, Nimesh S. Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Oxford, England: Elsevier; 2017.
10.1016/B978-0-08-100557-6.00010-9 Google Scholar
- 16Ng CT, Yong LQ, Hande MP, et al. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster. Int J Nanomedicine. 2017; 12: 1621-1637.
- 17Dubey A, Goswami M, Yadav K, Chaudhary D. Oxidative stress and nano-toxicity induced by TiO2 and ZnO on WAG cell line. PLoS One. 2015; 10:e0127493.
- 18Luo Y-H, Chang LW, Lin P. Metal-based nanoparticles and the immune system: activation, inflammation, and potential applications. Biomed Res Int. 2015; 2015: 1-12.
- 19Han L, Su L, Chen D, et al. ZnS nanoarchitectures induced dysfunction of vascular endothelial cells in vitro and in vivo. Environ Toxicol. 2015; 30: 755-768.
- 20Durazo SA, Kompella UB. Functionalized nanosystems for targeted mitochondrial delivery. Mitochondrion. 2012; 12: 190-201.
- 21Mohamed HR, Hussien NA. Genotoxicity studies of titanium dioxide nanoparticles (TiO2NPs) in the brain of mice. Scientifica. 2016; 2016: 1-7.
- 22Wan R, Mo Y, Feng L, Chien S, Tollerud DJ, Zhang Q. DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. Chem Res Toxicol. 2012; 25: 1402-1411.
- 23Wan R, Mo Y, Zhang Z, Jiang M, Tang S, Zhang Q. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol. 2017; 14: 38.
- 24Pirsaheb M, Azadi NA, Miglietta ML, et al. Toxicological effects of transition metal-doped titanium dioxide nanoparticles on goldfish (Carassius auratus) and common carp (Cyprinus carpio). Chemosphere. 2019; 215: 904-915.
- 25Alyaudtin RN, Reichel A, Löbenberg R, Ramge P, Kreuter J, Begley DJ. Interaction of poly(butylcyanoacrylate) nanoparticles with the blood-brain barrier in vivo and in vitro. J Drug Target. 2001; 9: 209-221.
- 26Gelperina S, Maksimenko O, Khalansky A, et al. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm. 2010; 74: 157-163.
- 27Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001; 47: 65-81.
- 28Kreuter J. Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (BBB). J Microencapsul. 2013; 30: 49-54.
- 29Kreuter J, Ramge P, Petrov V, et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res. 2003; 20: 409-416.
- 30Kreuter J, Shamenkov D, Petrov V, et al. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target. 2002; 10: 317-325.
- 31Wagner S, Zensi A, Wien SL, et al. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PLoS One. 2012; 7:e32568.
- 32Kreuter J, Hekmatara T, Dreis S, Vogel T, Gelperina S, Langer K. Covalent attachment of apolipoprotein AI and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. J Control Release. 2007; 118: 54-58.
- 33Michaelis K, Hoffmann MM, Dreis S, et al. Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther. 2006; 317: 1246-1253.
- 34Zensi A, Begley D, Pontikis C, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release. 2009; 137: 78-86.
- 35Donida B, Tauffner B, Raabe M, et al. Monoolein-based nanoparticles for drug delivery to the central nervous system: a platform for lysosomal storage disorder treatment. Eur J Pharm Biopharm. 2018; 133: 96-103.
- 36Coelho JC, Giugliani R. Fibroblasts of skin fragments as a tool for the investigation of genetic diseases: technical recommendations. Genet Mol Biol. 2000; 23: 269-271.
- 37Jiang X, Sidhu R, Porter FD, et al. A sensitive and specific LC-MS/MS method for rapid diagnosis of Niemann-Pick C1 disease from human plasma. J Lipid Res. 2011; 52: 1435-1445.
- 38Ribas G, Souza HM, de Mari J, et al. Selective screening of Niemann-Pick type C Brazilian patients by cholestane-3β,5α,6β-triol and chitotriosidase measurements followed by filipin staining and NPC1/NPC2 gene analysis. Clin Chim Acta. 2016; 459: 57-62.
- 39Vanier MT, Latour P. Methods in Cell Biology. Vol 126. Santa Barbara, CA: Elsevier; 2015.
- 40Zhou C, Cheng X, Zhao Q, Yan Y, Wang J, Huang J. Self-assembly of nonionic surfactant tween 20@ 2β-CD inclusion complexes in dilute solution. Langmuir. 2013; 29: 13175-13182.
- 41Altube MJ, Selzer SM, de Farias MA, et al. Surviving nebulization-induced stress: dexamethasone in pH-sensitive archaeosomes. Nanomedicine (Lond). 2016; 11: 2103-2117. https://doi.org/10.2217/nnm-2016-0165.
- 42Repetto G, Del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 2008; 3: 1125-1131.
- 43Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972; 247: 3170-3175.
- 44Aebi H. Methods in Enzymology. Vol 105. Pennsylvania: Elsevier; 1984.
- 45LeBel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 1992; 5: 227-231.
- 46Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72: 248-254.
- 47Yu D, Swaroop M, Wang M, et al. Niemann–Pick disease type C: induced pluripotent stem cell-derived neuronal cells for modeling neural disease and evaluating drug efficacy. J Biomol Screen. 2014; 19: 1164-1173.
- 48Teubner M, Strey R. Origin of the scattering peak in microemulsions. J Chem Phys. 1987; 87: 3195-3200.
- 49Vanier MT. Complex lipid trafficking in Niemann-Pick disease type C. J Inherit Metab Dis. 2015; 38: 187-199.
- 50Monnaert V, Tilloy S, Bricout H, Fenart L, Cecchelli R, Monflier E. Behavior of α-, β-, and γ-cyclodextrins and their derivatives on an in vitro model of blood-brain barrier. J Pharmacol Exp Ther. 2004; 310: 745-751.
- 51Ramirez CM, Liu B, Taylor AM, et al. Weekly cyclodextrin administration normalizes cholesterol metabolism in nearly every organ of the Niemann-Pick type C1 mouse and markedly prolongs life. Pediatr Res. 2010; 68: 309-315.
- 52Valldeperas M, Wiśniewska M, Ram-On M, et al. Sponge phases and nanoparticle dispersions in aqueous mixtures of mono- and diglycerides. Langmuir. 2016; 32: 8650-8659.
- 53Gou N, Onnis-Hayden A, Gu AZ. Mechanistic toxicity assessment of nanomaterials by whole-cell-array stress genes expression analysis. Environ Sci Technol. 2010; 44: 5964-5970.
- 54Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988; 175: 184-191.
- 55Crumling MA, King KA, Duncan RK. Cyclodextrins and iatrogenic hearing loss: new drugs with significant risk. Front Cell Neurosci. 2017; 11(355): 1-14. https://doi.org/10.3389/fncel.2017.00355. eCollection 2017.
- 56Fujimoto C, Yamasoba T. Mitochondria-targeted antioxidants for treatment of hearing loss: a systematic review. Antioxidants. 2019; 8: 109.
- 57Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 2011; 50: 98-115.