How different is a 3D-printed replica from a conspecific in the eyes of a zebrafish?
Tommaso Ruberto
New York University Tandon School of Engineering
Search for more papers by this authorGiovanni Polverino
New York University Tandon School of Engineering
Search for more papers by this authorCorresponding Author
Maurizio Porfiri
New York University Tandon School of Engineering
Correspondence concerning this article should be addressed to Maurizio Porfiri, Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, NY 11201, USA. Contact: [email protected], 646-997-3681 (phone), 646-997-3532 (fax).Search for more papers by this authorTommaso Ruberto
New York University Tandon School of Engineering
Search for more papers by this authorGiovanni Polverino
New York University Tandon School of Engineering
Search for more papers by this authorCorresponding Author
Maurizio Porfiri
New York University Tandon School of Engineering
Correspondence concerning this article should be addressed to Maurizio Porfiri, Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, NY 11201, USA. Contact: [email protected], 646-997-3681 (phone), 646-997-3532 (fax).Search for more papers by this authorAbstract
Robotics is emerging as a promising tool for aiding research on animal behavior. The possibility of generating customizable, controllable, and standardized robotic stimuli has been demonstrated through a number of behavioral assays, involving vertebrates and invertebrates. However, the specific appraisal of the nature of robotic stimuli is currently lacking. Here, we attempt to evaluate this aspect in zebrafish, through a within-subject design in which experimental subjects are faced with three experimental conditions. In the first test, we investigated sociability by measuring zebrafish response to a conspecific separated by a one-way glass. In the second test, we studied zebrafish behavior in response to a 3D-printed zebrafish replica actuated along realistic trajectories through a novel four-degree-of-freedom robotic platform. Last, we investigated fear responses in a shelter-seeking test. In agreement with our expectations, zebrafish exhibited an equivalent preference for live and robotic stimuli, and the degree of preference for the robotic replica correlated negatively with the individual propensity to seek shelter. The equivalent preference for the replica and conspecific suggests that the appraisal of the target stimuli is analogous. The preliminary evidence of a correlation between behavioral responses across tests points to the readability of robotics-based approaches to investigate interindividual differences.
References
- Abaid, N., Bartolini, T., Macri, S., & Porfiri, M. (2012). Zebrafish responds differentially to a robotic fish of varying aspect ratio, tail beat frequency, noise, and color. Behavioural Brain Research , 233(2), 545–553. doi:10.1016/j.bbr.2012.05.047
- Abaid, N., Marras, S., Fitzgibbons, C., & Porfiri, M. (2013). Modulation of risk-taking behaviour in golden shiners (Notemigonus crysoleucas) using robotic fish. Behavioural Processes , 100, 9–12. doi:10.1016/j.beproc.2013.07.010
- Abaid, N., Spinello, C., Laut, J., & Porfiri, M. (2012). Zebrafish (Danio rerio) responds to images animated by mathematical models of animal grouping. Behavioural Brain Research , 232(2), 406–410. doi:10.1016/j.bbr.2012.03.028
- Ahmed, O., Seguin, D., & Gerlai, R. (2011). An automated predator avoidance task in zebrafish. Behavioural Brain Research , 216(1), 166–171. doi:10.1016/j.bbr.2010.07.028
- Aureli, M., & Porfiri, M. (2010). Coordination of self-propelled particles through external leadership. EPL (Europhysics Letters) , 92(4), 40004. doi:10.1209/0295-5075/92/40004
- Bartolini, T., Mwaffo, V., Showler, A., Macrì, S., Butail, S., & Porfiri, M. (2016). Zebrafish response to 3D printed shoals of conspecifics: the effect of body size. Bioinspiration & Biomimetics , 11(2), 026003. doi:10.1088/1748-3190/11/2/026003
- Biro, P. A., Abrahams, M. V., Post, J. R., & Parkinson, E. A. (2006). Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates. Journal of Animal Ecology , 75(5), 1165–1171. doi:10.1111/j.1365-2656.2006.01137.x
- Brockmark, S., Adriaenssens, B., & Johnsson, J. (2010). Less is more: density influences the development of behavioural life skills in trout. Proceedings of the Royal Society of London B: Biological Sciences , 277(1696), 3035–3043. doi:10.1098/rspb.2010.0561
-
Butail, S., Abaid, N., Macrì, S., & Porfiri, M. (2015). Fish–robot interactions: robot fish in animal behavioral studies. In R. Du, Z. Li, K. Youcef-Toumi, & P. Valdivia y Alvarado (Eds.), Robot fish (pp. 221–240). New York: Springer. doi:10.1007/978-3-662-46870-8_12
10.1007/978‐3‐662‐46870‐8_12 Google Scholar
- Butail, S., Bartolini, T., & Porfiri, M. (2013). Collective response of zebrafish shoals to a free-swimming robotic fish. PLoS ONE , 8(10), e76123. doi:10.1371/journal.pone.0076123
- Butail, S., Ladu, F., Spinello, D., & Porfiri, M. (2014). Information flow in animal-robot interactions. Entropy , 16(3), 1315–1330. doi:10.3390/e16031315
- Butail, S., Polverino, G., Phamduy, P., Del Sette, F., & Porfiri, M. (2014). Influence of robotic shoal size, configuration, and activity on zebrafish behavior in a free-swimming environment. Behavioural Brain Research 275C, 269–280. doi:10.1016/j.bbr.2014.09.015
- Cahill, G. M. (1996). Circadian regulation of melatonin production in cultured zebrafish pineal and retina. Brain Research , 708(1), 177–181. doi:10.1016/0006-8993(95)01365-2
- Carazo, P., Font, E., & Desfilis, E. (2008). Beyond ‘nasty neighbours’ and ‘dear enemies’? Individual recognition by scent marks in a lizard (Podarcis hispanica). Animal Behaviour , 76(6), 1953–1963. doi:10.1016/j.anbehav.2008.08.018
- Cianca, V., Bartolini, T., Porfiri, M., & Macri, S. (2013). A robotics-based behavioral paradigm to measure anxiety-related responses in zebrafish. PLoS ONE , 8(7), e69661. doi:10.1371/journal.pone.0069661
-
Conner, B. P., Manogharan, G. P., Martof, A. N., Rodomsky, L. M., Rodomsky, C. M., Jordan, D. C., & Limperos, J. W. (2014). Making sense of 3-D printing: creating a map of additive manufacturing products and services. Additive Manufacturing
, 1, 64–76. doi:10.1016/j.addma.2014.08.005
10.1016/j.addma.2014.08.005 Google Scholar
- De Margerie, E., Lumineau, S., Houdelier, C., & Yris, M. A. R. (2011). Influence of a mobile robot on the spatial behaviour of quail chicks. Bioinspiration & Biomimetics , 6(3), 034001. doi:10.1088/1748-3182/6/3/034001
- Dugatkin, L. A., McCall, M. A., Gregg, R. G., Cavanaugh, A., Christensen, C., & Unseld, M. (2005). Zebrafish (Danio rerio) exhibit individual differences in risk-taking behavior during predator inspection. Ethology Ecology & Evolution , 17(1), 77–81. doi:10.1080/08927014.2005.9522617
- Engeszer, R. E., Ryan, M. J., & Parichy, D. M. (2004). Learned social preference in zebrafish. Current Biology , 14(10), 881–884. doi:10.1016/j.cub.2004.04.042
- Engeszer, R. E., Wang, G., Ryan, M. J., & Parichy, D. M. (2008). Sex-specific perceptual spaces for a vertebrate basal social aggregative behavior. Proceedings of the National Academy of Sciences , 105(3), 929–933. doi:10.1073/pnas.0708778105
- Faria, J. J., Dyer, J. R. G., Clément, R. O., Couzin, I. D., Holt, N., Ward, A. J. W., … Krause, J. (2010). A novel method for investigating the collective behaviour of fish: introducing ‘Robofish’. Behavioral Ecology and Sociobiology , 64(8), 1211–1218. doi:10.1007/s00265-010-0988-y
- Fernandes, Y., Rampersad, M., Jia, J., & Gerlai, R. (2015). The effect of the number and size of animated conspecific images on shoaling responses of zebrafish. Pharmacology Biochemistry and Behavior , 139, 94–102. doi:10.1016/j.pbb.2015.01.011
- Fernández-Juricic, E., & Kowalski, V. (2011). Where does a flock end from an information perspective? A comparative experiment with live and robotic birds. Behavioral Ecology , 22(6), 1304–1311. doi:10.1093/beheco/arr132
- Fraser, D. F., Gilliam, J. F., Daley, M. J., Le, A. N., & Skalski, G. T. (2001). Explaining leptokurtic movement distributions: intrapopulation variation in boldness and exploration. The American Naturalist , 158(2), 124–135. doi:10.1086/321307
- Frohnwieser, A., Murray, J. C., Pike, T. W., & Wilkinson, A. (2016). Using robots to understand animal cognition. Journal of the Experimental Analysis of Behavior , 105(1), 14–22. doi:10.1002/jeab.193
-
Garnier, S. (2011). From ants to robots and back: how robotics can contribute to the study of collective animal behavior. In Y. Meng & Y Jin (Eds.), Bio-inspired self-organizing robotic systems (pp. 105–120). New York: Springer. doi:10.1007/978-3-642-20760-0_5
10.1007/978‐3‐642‐20760‐0_5 Google Scholar
- Grunwald, D. J., & Eisen, J. S. (2002). Headwaters of the zebrafish—emergence of a new model vertebrate. Nature Reviews Genetics , 3(9), 717–724. doi:10.1038/nrg892
- Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., … Amé, J. M. (2007). Social integration of robots into groups of cockroaches to control self-organized choices. Science , 318(5853), 1155–1158. doi:10.1126/science.1144259
- Hohn, C., & Petrie-Hanson, L. (2013). Evaluation of visible implant elastomer tags in zebrafish (Danio rerio). Biology Open, BIO20136460. doi:10.1242/bio.20136460
- Ishii, H., Masuda, Y., Miyagishima, S., Fumino, S., Takanishi, A., Laschi, C., … Dario, P. (2009). Design and development of biomimetic quadruped robot for behavior studies of rats and mice. Paper presented at the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/IEMBS.2009.5335307
- Ishii, H., Ogura, M., Kurisu, S., Komura, A., Takanishi, A., Iida, N., & Kimura, H. (2006). Experimental study on task teaching to real rats through interaction with a robotic rat. Paper presented at the International Conference on Simulation of Adaptive Behavior. doi:10.1007/11840541_53
- Jolly, L., Pittet, F., Caudal, J. P., Mouret, J. B., Houdelier, C., Lumineau, S., & De Margerie, E. (2016). Animal-to-robot social attachment: initial requisites in a gallinaceous bird. Bioinspiration & Biomimetics , 11(1), 016007. doi:10.1088/1748-3190/11/1/016007
- Kalueff, A. V., Echevarria, D. J., & Stewart, A. M. (2014). Gaining translational momentum: more zebrafish models for neuroscience research. Progress in Neuro-Psychopharmacology and Biological Psychiatry , 55, 1–6. doi:10.1016/j.pnpbp.2014.01.022
- Kalueff, A. V., Gebhardt, M., Stewart, A. M., Cachat, J. M., Brimmer, M., Chawla, J. S., … Schneider, H. (2013). Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish , 10(1), 70–86. doi:10.1089/zeb.2012.0861
- Kopman, V., Laut, J., Polverino, G., & Porfiri, M. (2013). Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test. Journal of the Royal Society Interface , 10(78), 20120540. doi:10.1098/rsif.2012.0540
- Krause, J., Winfield, A. F. T., & Deneubourg, J. L. (2011). Interactive robots in experimental biology. Trends in Ecology & Evolution , 26(7), 369–375. doi:10.1016/j.tree.2011.03.015
- Kubinyi, E., Miklósi, Á., Kaplan, F., Gácsi, M., Topál, J., & Csányi, V. (2004). Social behaviour of dogs encountering AIBO, an animal-like robot in a neutral and in a feeding situation. Behavioural Processes , 65(3), 231–239. doi:10.1016/j.beproc.2003.10.003
- Ladu, F., Bartolini, T., Panitz, S. G., Chiarotti, F., Butail, S., Macri, S., & Porfiri, M. (2015). Live predators, robots, and computer-animated images elicit differential avoidance responses in zebrafish. Zebrafish , 12(3), 205–214. doi:10.1089/zeb.2014.1041
- Ladu, F., Mwaffo, V., Li, J., Macri, S., & Porfiri, M. (2015). Acute caffeine administration affects zebrafish response to a robotic stimulus. Behavioural Brain Research , 289, 48–54. doi:10.1016/j.bbr.2015.04.020
- Landgraf, T., Bierbach, D., Nguyen, H., Muggelberg, N., Romanczuk, P., & Krause, J. (2016). RoboFish: increased acceptance of interactive robotic fish with realistic eyes and natural motion patterns by live Trinidadian guppies. Bioinspiration & Biomimetics , 11(1), 015001. doi:10.1088/1748-3190/11/1/015001
-
Landgraf, T., Moballegh, H., & Rojas, R. (2008). Design and development of a robotic bee for the analysis of honeybee dance communication. Applied Bionics and Biomechanics
, 5(3), 157–164. doi:10.1080/11762320802617552
10.1155/2008/871297 Google Scholar
-
Landgraf, T., Nguyen, H., Schröer, J., Szengel, A., Clément, R. J., Bierbach, D., & Krause, J. (2014). Blending in with the shoal: robotic fish swarms for investigating strategies of group formation in guppies. In A. Duff, B. N. F. Lepora, A. Mura, T. J. Prescott, & P. F. M. J. Verschure (Eds.), Biomimetic and Biohybrid Systems (pp. 178–189). Springer.com. doi:10.1007/978-3-319-09435-9_16\/s.
10.1007/978‐3‐319‐09435‐9_16\/s Google Scholar
- Lawrence, C. (2007). The husbandry of zebrafish (Danio rerio): a review. Aquaculture , 269(1), 1–20. doi:10.1016/j.aquaculture.2007.04.077
- Luca, R. M., & Gerlai, R. (2012). In search of optimal fear inducing stimuli: differential behavioral responses to computer animated images in zebrafish. Behavioural Brain Research , 226(1), 66–76. doi:10.1016/j.bbr.2011.09.001
- Macedonia, J. M., Clark, D. L., Riley, R. G., & Kemp, D. J. (2013). Species recognition of color and motion signals in Anolis grahami: evidence from responses to lizard robots. Behavioral Ecology, 24(4), 846–852. doi:10.1093/beheco/art027
- Marras, S., & Porfiri, M. (2012). Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion. Journal of The Royal Society Interface , 9(73), 1856–1868. doi:10.1098/rsif.2012.0084
- Maximino, C., de Brito, T. M., da Silva Batista, A. W., Herculano, A. M., Morato, S., & Gouveia, A. (2010). Measuring anxiety in zebrafish: a critical review. Behavioural Brain Research , 214(2), 157–171. doi:10.1016/j.bbr.2010.05.031
- Michelsen, A., Andersen, B. B., Storm, J., Kirchner, W. H., & Lindauer, M. (1992). How honeybees perceive communication dances, studied by means of a mechanical model. Behavioral Ecology and Sociobiology , 30(3), 143–150. doi:10.1007/BF00166696
- Miklósi, Á., & Gácsi, M. (2012). On the utilization of social animals as a model for social robotics. Frontiers in Psychology , 3, 75. doi:10.3389/fpsyg.2012.00075
- Miller, N., & Gerlai, R. (2011). Shoaling in zebrafish: what we don't know. Reviews in the Neurosciences , 22(1), 17–25. doi:10.1515/RNS.2011.004
- Mitri, S., Wischmann, S., Floreano, D., & Keller, L. (2013). Using robots to understand social behaviour. Biological Reviews , 88(1), 31–39. doi:10.1111/j.1469-185X.2012.00236.x
- Moretz, J. A., Martins, E. P., & Robison, B. D. (2007). Behavioral syndromes and the evolution of correlated behavior in zebrafish. Behavioral Ecology , 18(3), 556–562. doi:10.1093/beheco/arm011
- Panula, P., Chen, Y. C., Priyadarshini, M., Kudo, H., Semenova, S., Sundvik, M., & Sallinen, V. (2010). The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiology of Disease , 40(1), 46–57. doi:10.1016/j.nbd.2010.05.010
- Partan, S. R., Larco, C. P., & Owens, M. J. (2009). Wild tree squirrels respond with multisensory enhancement to conspecific robot alarm behaviour. Animal Behaviour , 77(5), 1127–1135. doi:10.1016/j.anbehav.2008.12.029
- Partan, S. R., Otovic, P., Price, V. L., & Brown, S. E. (2011). Assessing display variability in wild brown anoles Anolis sagrei using a mechanical lizard model. Current Zoology , 57(2), 140–152. doi:10.1093/czoolo/57.2.140
- Patricelli, G. L., Uy, J. A. C., Walsh, G., & Borgia, G. (2002). Sexual selection: male displays adjusted to female's response. Nature , 415(6869), 279–280. doi:10.1038/415279a
- Phamduy, P., Polverino, G., Fuller, R. C., & Porfiri, M. (2014). Fish and robot dancing together: bluefin killifish females respond differently to the courtship of a robot with varying color morphs. Bioinspiration & Biomimetics , 9(3), 036021. doi:10.1088/1748-3182/9/3/036021
- Polverino, G., Abaid, N., Kopman, V., Macrì, S., & Porfiri, M. (2012). Zebrafish response to robotic fish: preference experiments on isolated individuals and small shoals. Bioinspiration & Biomimetics , 7(3), 036019. doi:10.1088/1748-3182/7/3/036019
- Polverino, G., Bierbach, D., Killen, S. S., Uusi-Heikkilä, S., & Arlinghaus, R. (2016). Body length rather than routine metabolic rate and body condition correlates with risk-taking behaviour in juvenile zebrafish (Danio rerio). Journal of Fish Biology , 89(5), 2251–2267. doi:10.1111/jfb.13100
- Polverino, G., Phamduy, P., & Porfiri, M. (2013). Fish and robots swimming together in a water tunnel: robot color and tail-beat frequency influence fish behavior. PLoS ONE , 8(10), e77589. doi:10.1371/journal.pone.0077589
- Polverino, G., & Porfiri, M. (2013a). Mosquitofish (Gambusia affinis) responds differentially to a robotic fish of varying swimming depth and aspect ratio. Behavioural Brain Research , 250, 133–138. doi:10.1016/j.bbr.2013.05.008
- Polverino, G., & Porfiri, M. (2013b). Zebrafish (Danio rerio) behavioural response to bioinspired robotic fish and mosquitofish (Gambusia affinis). Bioinspiration & Biomimetics , 8(4), 044001. doi:10.1088/1748-3182/8/4/044001
- Postlethwait, J. H., Woods, I. G., Ngo-Hazelett, P., Yan, Y. L., Kelly, P. D., Chu, F., … Talbot, W. S. (2000). Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Research , 10(12), 1890–1902. doi:10.1101/gr.164800
- Quera, V., Beltran, F. S., & Dolado, R. (2011). Determining shoal membership: a comparison between momentary and trajectory-based methods. Behavioural Brain Research , 225(1), 363–366. doi:10.1016/j.bbr.2011.07.017
- Raj, A., & Thakur, A. (2016). Fish-inspired robots: design, sensing, actuation, and autonomy—a review of research. Bioinspiration & Biomimetics , 11(3), 031001. doi:10.1088/1748-3190/11/3/031001
- Ramsay, J. M., Feist, G. W., Varga, Z. M., Westerfield, M., Kent, M. L., & Schreck, C. B. (2009). Whole-body cortisol response of zebrafish to acute net handling stress. Aquaculture , 297(1), 157–162. doi:10.1016/j.aquaculture.2009.08.035
- Réale, D., Reader, S. M., Sol, D., McDougall, P. T., & Dingemanse, N. J. (2007). Integrating animal temperament within ecology and evolution. Biological Reviews , 82(2), 291–318. doi:10.1111/j.1469-185X.2007.00010.x
- Rehage, J. S., & Sih, A. (2004). Dispersal behavior, boldness, and the link to invasiveness: a comparison of four Gambusia species. Biological Invasions , 6(3), 379–391. doi:10.1023/B:BINV.0000034618.93140.a5
- Rosenthal, G. G., & Ryan, M. J. (2005). Assortative preferences for stripes in danios. Animal Behaviour , 70(5), 1063–1066. doi:10.1016/j.anbehav.2005.02.005
-
Rossi, C., Coral, W., & Barrientos, A. (2013). Robotic fish to lead the school. In A.P. Palstra & J. V. Planas (Eds.), Swimming physiology of fish (pp. 407–421). Berlin Heidelberg: Springer. doi:10.1007/978-3-642-31049-2_17
10.1007/978‐3‐642‐31049‐2_17 Google Scholar
- Ruberto, T., Mwaffo, V., Singh, S., Neri, D., & Porfiri, M. (2016). Zebrafish response to a robotic replica in three dimensions. Royal Society Open Science , 3(10). doi:10.1098/rsos.160505
- Saverino, C., & Gerlai, R. (2008). The social zebrafish: behavioral responses to conspecific, heterospecific, and computer animated fish. Behavioural Brain Research , 191(1), 77–87. doi:10.1016/j.bbr.2008.03.013
- Shi, Q., Ishii, H., Sugahara, Y., Takanishi, A., Huang, Q., & Fukuda, T. (2015). Design and control of a biomimetic robotic rat for interaction with laboratory rats. IEEE/ASME Transactions on Mechatronics , 20(4), 1832–1842. doi:10.1109/TMECH.2014.2356595
- Spinello, C., Macrì, S., & Porfiri, M. (2013). Acute ethanol administration affects zebrafish preference for a biologically inspired robot. Alcohol , 47(5), 391–398. doi:10.1016/j.alcohol.2013.04.003
- Stamps, J. A. (2007). Growth–mortality tradeoffs and ‘personality traits’ in animals. Ecology Letters , 10(5), 355–363. doi:10.1111/j.1461-0248.2007.01034.x
- Stewart, A. M., Nguyen, M., Wong, K., Poudel, M. K., & Kalueff, A. V. (2014). Developing zebrafish models of autism spectrum disorder (ASD). Progress in Neuro-Psychopharmacology and Biological Psychiatry , 50, 27–36. doi:10.1016/j.pnpbp.2013.11.014
- Swain, D. T., Couzin, I. D., & Leonard, N. E. (2012). Real-time feedback-controlled robotic fish for behavioral experiments with fish schools. Proceedings of the IEEE , 100(1), 150–163. doi:10.1109/JPROC.2011.2165449
- Takanishi, A., Aoki, T., Ito, M., Ohkawa, Y., & Yamaguchi, J. (1998). Interaction between creature and robot: development of an experiment system for rat and rat robot interaction . Paper presented at the Intelligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International Conference on. doi:10.1109/IROS.1998.724896
- Ward, A. J. W., Sumpter, D. J. T., Couzin, I. D., Hart, P. J. B., & Krause, J. (2008). Quorum decision-making facilitates information transfer in fish shoals. Proceedings of the National Academy of Sciences , 105(19), 6948–6953. doi: 10.1073/pnas.0710344105
- Ward, A. J. W., Thomas, P., Hart, P. J. B., & Krause, J. (2004). Correlates of boldness in three-spined sticklebacks (Gasterosteus aculeatus). Behavioral Ecology and Sociobiology , 55(6), 561–568. doi:10.1007/s00265-003-0751-8
- Wiles, J., Heath, S., Ball, D., Quinn, L., & Chiba, A. (2012). Rat meets iRat. Paper presented at the 2012 I.E. International Conference on Development and Learning and Epigenetic Robotics (ICDL). doi:10.1109/DevLrn.2012.6400870
- Wilson, D. S. (1998). Adaptive individual differences within single populations. Philosophical Transactions of the Royal Society of London B: Biological Sciences , 353(1366), 199–205. doi:10.1098/rstb.1998.0202
- Wright, D., Nakamichi, R., Krause, J., & Butlin, R. K. (2006). QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behavior Genetics , 36(2), 271–284. doi:10.1007/s10519-005-9029-4