The picric acid removal from aqueous solutions by multi-walled carbon nanotubes/EDTA/carboxymethylcellulose nanocomposite: Central composite design optimization, kinetic, and isotherm studies
Mina Azadfar
Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Search for more papers by this authorCorresponding Author
Hasan Tahermansouri
Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Correspondence
Hasan Tahermansouri, Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
Email: [email protected], [email protected]
Search for more papers by this authorMahnaz Qomi
Active Pharmaceutical Ingredients Research Center (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Search for more papers by this authorMina Azadfar
Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Search for more papers by this authorCorresponding Author
Hasan Tahermansouri
Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Correspondence
Hasan Tahermansouri, Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
Email: [email protected], [email protected]
Search for more papers by this authorMahnaz Qomi
Active Pharmaceutical Ingredients Research Center (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
Search for more papers by this authorFunding information: Research Vice Presidency of Tehran Medical Sciences, Islamic Azad University
Abstract
The removal of hazardous picric acid is of great importance to making healthy and drinkable water. In this research, a nanocomposite (MWCNT-EDTA-CMC) based on carboxylated multiwall carbon nanotubes (MWCNT-COOH) modified by carboxymethylcellulose (CMC) and ethylenediamintetraacetic acid (EDTA) was prepared for adsorption and removal of picric acid from aqueous solutions. MWCNT-EDTA-CMC was characterized by Fourier transform infrared (FT-IR), field-emission scanning electron microscopy (FESEM), thermal gravimetric analysis (TGA). Central composite design (CCD) was used to study the influence of pH, adsorbent dosage, and initial picric acid concentrations on the removal percentage of picric acid. At optimum conditions (pH 3.0, MWCNT-EDTA-CMC dosage 0.050 g, picric acid concentration 30 mg L−1), high removal efficiency (97.67%) was obtained for picric acid which was reasonably well predicted by the model. The adsorption process was demonstrated by the pseudo-second-order kinetic and Freundlich isotherm models for both adsorbents. In addition, the consumed MWCNT-EDTA-CMC could be reused up to 3th cycle of regeneration.
Supporting Information
Filename | Description |
---|---|
jccs202100339-sup-0001-supinfo.docxWord 2007 document , 2.9 MB | Appendix S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1S. Khan, A. Hazra, B. Dutta, M. J. R. Akhtaruzzaman, P. Banerjee, M. H. Mir, Cryst. Growth Des. 2021, 21, 3344.
- 2C. C. Dennie, W. L. Mcbride, P. E. Davis, Arch. Derm. Syphilol. 1929, 20, 698.
10.1001/archderm.1929.01440050108008 Google Scholar
- 3P. Aggarwal, K. Misra, S. K. Kapoor, A. K. Bhalla, Defence Sci. J. 1998, 48, 219.
- 4B. Jiang, W. Liu, S. Liu, W. Liu, Dyes Pigm. 2021, 184, 108794.
- 5S. C. Gad, Picric Acid, Encyclopedia of Toxicology, 3rd ed. (Ed: P. Wexler), Academic Press, San Diego, CA 2014, p. 952.
- 6M. Nipper, R. S. Carr, J. M. Biedenbach, R. L. Hooten, K. Miller, Mar. Pollut. Bull. 2005, 50, 1205.
- 7J. F. Wyman, M. P. Serve, D. W. Hobson, L. H. Lee, D. E. Uddin, J. Toxicol. Environ. Health. 1992, 37, 313.
- 8N. Dulova, M. Trapido, A. Dulov, Environ. Technol. 2011, 32, 439.
- 9A. Ikem, N. O. Egiebor, Environ. Eng. Sci. 2009, 26, 343.
- 10D. R. Bhatt, K. C. Maheria, J. K. Parikh, J. Hazard. Mater. 2015, 300, 338.
- 11J. Shen, R. He, H. Yu, L. Wang, J. Zhang, X. Sun, J. Li, W. Han, L. Xu, Bioresour. Technol 2009, 100, 1922.
- 12M. Yar, A. B. Shah, M. A. Hashmi, K. Ayub, New J. Chem. 2020, 44, 18646.
- 13M. Mohseni Kafshgari, H. Tahermansouri, Colloids Surf. B 2017, 160, 671.
- 14H. Parham, B. Zargar, M. Rezazadeh, Mater. Sci. Eng., C 2012, 32, 2109.
- 15H. Uslu, G. Demir, J. Chem. Eng. Data. 2010, 55, 3290.
- 16A. Panja, K. Ghosh, New J. Chem. 2019, 43, 934.
- 17Z. Xu, Y. Wen, L. Tian, G. Li, Inorg. Chem. Commun. 2017, 77, 11.
- 18H. Sepehrian, J. Fasihi, M. Khayatzadeh Mahani, Ind. Eng. Chem. Res. 2009, 48, 6772.
- 19R. Khakpour, H. Tahermansouri, Int. J. Biol. Macromol. 2018, 109, 598.
- 20D. Mohan, A. Sarswat, V. K. Singh, M. Alexandre-Franco, C. U. Pittman Jr.., Chem. Eng. J. 2011, 172, 1111.
- 21R. Ganigar, G. Rytwo, Y. Gonen, A. Radian, Y. G. Mishael, Appl. Clay Sci. 2010, 49, 311.
- 22M. C. Hermosin, I. Pavlovic, M. A. Ulibarri, J. Cornejo, Water. Res. 1996, 30, 171.
- 23Q. Kong, X. Shi, W. Ma, F. Zhang, T. Yu, F. Zhao, D. Zhao, C. Wei, J. Hazard. Mater. 2021, 415, 125690.
- 24A. Gul, N. Ghaffari Khaligh, N. M. Julkapli, J. Mol. Struct. 2021, 1235, 130148.
- 25K. Manzoor, M. Ahmad, S. Ahmad, S. Ikram, ACS Omega 2019, 4, 17425.
- 26P. Zong, D. Cao, Y. Cheng, S. Wang, T. Hayat, N. S. Alharbi, Z. Guo, Y. Zhao, C. He, Inorg. Chem. Front. 2018, 5, 3184.
- 27D. Shao, Z. Jiang, X. Wang, J. Li, Y. Meng, J. Phys. Chem. B. 2009, 113, 860.
- 28A. S. Eltaweil, G. S. Elgarhy, G. M. El-Subruiti, A. M. Omer, Int. J. Biol. Macromol. 2020, 154, 307.
- 29T. Huang, Y. Shao, Q. Zhang, Y. Deng, Z. Liang, F. Guo, P. Li, Y. Wang, ACS Sustainable Chem. Eng. 2019, 7, 8775.
- 30M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, L. A. Escaleira, Talanta 2008, 76, 965.
- 31E. Alipanahpour Dil, A. Asfaram, F. Sadeghfar, Analyst 2019, 144, 2684.
- 32S. Deng, Y. Chen, Water. Sci Technol. 2019, 79, 188.
- 33M. Foschi, P. Capasso, M. A. Maggi, F. Ruggieri, G. Fioravanti, ACS Omega 2021, 6, 16943.
- 34H. A. Oualid, Y. Abdellaoui, M. Laabd, M. E. Ouardi, Y. Brahmi, M. Iazza, J. A. Oualid, ACS Omega 2020, 5, 22192.
- 35M. Wakkel, B. Khiari, F. Zagrouba, Environ. Sci. Pollut. Res. 2019, 26, 18942.
- 36R. Bagheri, M. Ghaedi, A. Asfaram, E. Alipanahpour Dil, H. Javadian, Polyhedron 2019, 171, 464.
- 37H. Tahermansouri, Y. Aryanfar, E. Biazar, Bull. Korean Chem. Soc. 2013, 34, 149.
- 38K. Manzoor, M. Ahmad, S. Ahmad, S. Ikram, RSC Adv. 2019, 9, 7890.
- 39A. P. Terzyk, J. Colloid Interface Sci. 2003, 268, 301.
- 40H. Gholizadeh, A. Ghorbani-HasanSaraei, H. Tahermansouri, S.-A. Shahidi, J. Chin. Chem. Soc. 2020, 67, 546.
- 41T. J. Bandosz, Activated Carbon Surfaces in Environmental Remediation, Elsevier, Amsterdam, The Netherlands 2006.
- 42S. Aliyeva, J. Chin. Chem. Soc. 2020, 67, 2071.
- 43M. Mohammadi, M. Vadi, N. Bagehri, K. Shekoohi, F. Younessi, J. Chin. Chem. Soc. 2021, 68, 799.
- 44R. O. Z. Brohi, M. Y. Khuhawar, R. B. Mahar, J. Chem. Technol. Biotechnol. 2020, 95, 1694.
- 45K. Y. Foo, B. H. Hameed, Chem. Eng. J. 2010, 156, 2.
- 46S. J. M. Breig, K. J. K. Luti, Mater. Today: Proc. 2021, 42, 2277.
10.1016/j.matpr.2020.12.316 Google Scholar
- 47G. Torğut, M. Tanyol, Z. Meşe, Chem. Eng. Commun. 2020, 207, 1157.
- 48F. W. Breyfogle, Statistical Methods for Testing, Development, and Manufacturing, Wiley, New York, NY 1992.
- 49S. K. Sarı, D. Özmen, J. Dispersion Sci. Technol 2018, 39, 305.
- 50A. Asfaram, M. Ghaedi, K. Dashtian, G. R. Ghezelbash, ACS Sustainable Chem. Eng 2018, 6, 4549.