Prediction of physicochemical properties of organic molecules using van der Waals surface electrostatic potentials
Corresponding Author
Chan Kyung Kim
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, KoreaSearch for more papers by this authorKyung A Lee
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Search for more papers by this authorKwan Hoon Hyun
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Search for more papers by this authorHeung Jin Park
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Search for more papers by this authorIn Young Kwack
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Search for more papers by this authorChang Kon Kim
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Search for more papers by this authorHai Whang Lee
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Search for more papers by this authorBon-Su Lee
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Search for more papers by this authorCorresponding Author
Chan Kyung Kim
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, KoreaSearch for more papers by this authorKyung A Lee
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Search for more papers by this authorKwan Hoon Hyun
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Search for more papers by this authorHeung Jin Park
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Search for more papers by this authorIn Young Kwack
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Search for more papers by this authorChang Kon Kim
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Search for more papers by this authorHai Whang Lee
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Search for more papers by this authorBon-Su Lee
Department of Chemistry and High Energy Material Research Center, Inha University, Inchon, 402-751, Korea
Search for more papers by this authorAbstract
The generalized interaction properties function (GIPF) methodology developed by Politzer and coworkers, which calculated molecular surface electrostatic potential (MSESP) on a density envelope surface, was modified by calculating the MSESP on a much simpler van der Waals (vdW) surface of a molecule. In this work, vdW molecular surfaces were obtained from the fully optimized structures confirmed by frequency calculations at B3LYP/6-31G(d) level of theory. Multiple linear regressions for normal boiling point, heats of vaporization, heats of sublimation, heats of fusion, liquid density, and solid density were performed using GIPF variables from vdW model surface. Results from our model are compared with those from Politzer and coworkers. The surface-dependent β (and γ) values are dependent on the surface models but the surface-independent α and regression coefficients (r) are constant when vdW surface and density surface with 0.001 a.u. contour value are compared. This interesting phenomenon is explained by linear dependencies of GIPF variables. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 2073–2079, 2004
References
- 1 Chapman, N. B.; Shorter, J. Correlation Analysis in Chemistry, Recent Advances; Plenum Press: New York, 1978.
- 2 Parrill, A.; Reddy, M. R. Rational Drug Design. Novel Methodology and Practical Applications; American Chemical Society: Washington, DC, 1999.
- 3 Kubinyi, H.; Folkers, G.; Martin, Y. C. 3D QSAR in Drug Design; Kluwer: London, 1998, vol. 2.
- 4 Jurs, P. C. Encyclopedia of Computational Chemistry; P. v. R. Schleyer, Ed.; John Wiley & Sons, New York, 1998; p. 2320, vol. 4.
- 5 Kappé, A. K.; Casewit, C. J. Molecular Mechanics across Chemistry; University Science Books: California, 1997.
- 6 Sadlej, J. Semi-Empirical Methods of Quantum Chemistry; Ellis Horwood Ltd.: Chichester, 1985.
- 7 Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley & Sons: New York, 1986.
- 8(a) Rice, B. M.; Pai, S. V.; Hare, J. Combust Flame 1999, 118, 445; (b) Labanowski, J.; Schmitz, L.; Chen, K.-H.; Allinger, N. L. J Comput Chem 1998, 19, 1421; (c) Mathieu, D.; Simonetti, P. Thermochim Acta 2002, 384, 369; (d) Raghavachari, K.; Stefanov, B. B. Mol Phys 1997, 91, 555; (e) Gong, X. D.; Xiao, H. M. J Mol Struct (Theochem) 2001, 572, 213; (f) Mole, S. J.; Zhou, X.; Liu, R. J Phys Chem 1996, 100, 14665; (g) Wiberg, K. B. J Comput Chem 1984, 5, 197; (h) Ibrahim, M. R.; Schleyer, P. v. R. J Comput Chem 1985, 6, 157; (i) Allinger, N. L.; Schmitz, L. R.; Motoc, I.; Bender, C.; Labanowski, J. K. J Phys Org Chem 1990, 3, 732; (j) Piacenza, G.; Legsaï, G.; Blaive, B.; Gallo, R. J Phys Org Chem 1996, 9, 427; (k) Ammon, H. L. Struct Chem 2001, 12, 205.
- 9 Politzer, P.; Murray, J. S. Reviews in Computational Chemistry; K. B. Lipkowitz; D. B. Boyd, Ed., VCH Publishing: New York, 1991, p. 273, vol. 2.
- 10
Politzer, P.;
Murray, J. S.
Quantitative Treatments of Solute/Solvent Interactions;
Elsevier:
Amsterdam,
1994; p.
243.
10.1007/BF00983553 Google Scholar
- 11(a) Bader, R. F. W.; Carroll, M. T.; Cheeseman, J. R.; Chang, C. J Am Chem Soc 1987, 109, 7968; (b) Bader, R. F. W.; Henneker, W. H.; Cade, P. E. J Chem Phys 1967, 46, 3341.
- 12 Politzer, P.; Murray, J. S.; Grice, M. E.; Desalvo, M.; Miller, E. Mol Phys 1997, 91, 923.
- 13 Murray, J. S.; Brinck, T.; Politzer, P. Chem Phys 1996, 204, 289.
- 14 Murray, J. S.; Brinck, T.; Grice, E.; Politzer, P. J Mol Struct (Theochem) 1992, 256, 29.
- 15 Cramer, C. J.; Truhlar, D. G. Reviews in Computational Chemistry; K. B. Lipkowitz; D. B. Boyd, Ed.; VCH Publishing: New York, 1995, p. 1, vol. 6.
- 16(a) Onsager, L. J Am Chem Soc 1938, 58, 1486; (b) Wong, M. W.; Frisch, M. J.; Wiberg, K. B. J Am Chem Soc 1991, 113, 4776.
- 17(a) Miertus, S.; Scrocco, E.; Tomasi, J. Chem Phys 1981, 55, 117; (b) Miertus, S.; Tomasi, J. Chem Phys 1982, 65, 239.
- 18 Foresman, J. B.; Keith, T. A.; Wiberg, K. B.; Snoonian, J.; Frisch, M. J. J Phys Chem 1996, 100, 16098.
- 19 Möller, C.; Plesset, M. S. Phys Rev 1934, 46, 618.
- 20 Johnson, B. G.; Gill, P. M. W.; Pople, J. A. J Chem Phys 1993, 98, 5612.
- 21(a) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J Chem Phys 1997, 106, 1063; (b) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. Chem Phys Lett 1997, 270, 419.
- 22 Scheftenaar, G.; Noordik, J. H. J Comput-Aided Mol Design 2000, 14, 123.
- 23 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Head–Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.6; Gaussian, Inc.: Pittsburgh, PA, 1998.
- 24(a) Pauling, L. The Nature of Chemical Bond and the Structure of Molecules and Crystals; Cornell Univ. Press: Ithaca, NY, 1960; (b) Valvani, S. C.; Yalkowsky, S. H.; Amidon, G. L. J Phys Chem 1976, 80, 829.
- 25 Higo, J.; Go, N. J Comput Chem 1989, 10, 376.
- 26 Pascual–Ahuir, J. L.; Silla, E.; Tunin, I. J Comput Chem 1994, 15, 1127.