Scalable fine-grained parallelization of plane-wave–based ab initio molecular dynamics for large supercomputers
Ramkumar V. Vadali
Department of Computer Science, The Siebel Center, University of Illinois, 201 N. Goodwin Avenue, Urbana, Illinois 61801-2302
Search for more papers by this authorYan Shi
Department of Computer Science, The Siebel Center, University of Illinois, 201 N. Goodwin Avenue, Urbana, Illinois 61801-2302
Search for more papers by this authorSameer Kumar
Department of Computer Science, The Siebel Center, University of Illinois, 201 N. Goodwin Avenue, Urbana, Illinois 61801-2302
Search for more papers by this authorLaxmikant V. Kale
Department of Computer Science, The Siebel Center, University of Illinois, 201 N. Goodwin Avenue, Urbana, Illinois 61801-2302
Search for more papers by this authorMark E. Tuckerman
Department of Chemistry and Courant Institute of Mathematical Sciences, 100 Washington Square East, New York University, New York, New York 10003
Search for more papers by this authorCorresponding Author
Glenn J. Martyna
IBM Research, Division of Physical Science, TJ Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
IBM Research, Division of Physical Science, TJ Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598Search for more papers by this authorRamkumar V. Vadali
Department of Computer Science, The Siebel Center, University of Illinois, 201 N. Goodwin Avenue, Urbana, Illinois 61801-2302
Search for more papers by this authorYan Shi
Department of Computer Science, The Siebel Center, University of Illinois, 201 N. Goodwin Avenue, Urbana, Illinois 61801-2302
Search for more papers by this authorSameer Kumar
Department of Computer Science, The Siebel Center, University of Illinois, 201 N. Goodwin Avenue, Urbana, Illinois 61801-2302
Search for more papers by this authorLaxmikant V. Kale
Department of Computer Science, The Siebel Center, University of Illinois, 201 N. Goodwin Avenue, Urbana, Illinois 61801-2302
Search for more papers by this authorMark E. Tuckerman
Department of Chemistry and Courant Institute of Mathematical Sciences, 100 Washington Square East, New York University, New York, New York 10003
Search for more papers by this authorCorresponding Author
Glenn J. Martyna
IBM Research, Division of Physical Science, TJ Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
IBM Research, Division of Physical Science, TJ Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598Search for more papers by this authorAbstract
Many systems of great importance in material science, chemistry, solid-state physics, and biophysics require forces generated from an electronic structure calculation, as opposed to an empirically derived force law to describe their properties adequately. The use of such forces as input to Newton's equations of motion forms the basis of the ab initio molecular dynamics method, which is able to treat the dynamics of chemical bond-breaking and -forming events. However, a very large number of electronic structure calculations must be performed to compute an ab initio molecular dynamics trajectory, making the efficiency as well as the accuracy of the electronic structure representation critical issues. One efficient and accurate electronic structure method is the generalized gradient approximation to the Kohn–Sham density functional theory implemented using a plane-wave basis set and atomic pseudopotentials. The marriage of the gradient-corrected density functional approach with molecular dynamics, as pioneered by Car and Parrinello (R. Car and M. Parrinello, Phys Rev Lett 1985, 55, 2471), has been demonstrated to be capable of elucidating the atomic scale structure and dynamics underlying many complex systems at finite temperature. However, despite the relative efficiency of this approach, it has not been possible to obtain parallel scaling of the technique beyond several hundred processors on moderately sized systems using standard approaches. Consequently, the time scales that can be accessed and the degree of phase space sampling are severely limited. To take advantage of next generation computer platforms with thousands of processors such as IBM's BlueGene, a novel scalable parallelization strategy for Car–Parrinello molecular dynamics is developed using the concept of processor virtualization as embodied by the Charm++ parallel programming system. Charm++ allows the diverse elements of a Car–Parrinello molecular dynamics calculation to be interleaved with low latency such that unprecedented scaling is achieved. As a benchmark, a system of 32 water molecules, a common system size employed in the study of the aqueous solvation and chemistry of small molecules, is shown to scale on more than 1500 processors, which is impossible to achieve using standard approaches. This degree of parallel scaling is expected to open new opportunities for scientific inquiry. © 2004 Wiley Periodicals, Inc. J Comput Chem 16: 2006–2022, 2004
References
- 1 Rahman, A. Phys Rev A 1964, 136, 405.
- 2
Allen, M. P.;
Tildesley, D. J.
Computer Simulations of Liquids;
Clarendon Press:
Oxford,
1989.
10.1063/1.2810937 Google Scholar
- 3 Goldstein, H. Classical Mechanics; Addison-Wesley Pub. Co.: Reading, MA, 1980.
- 4 McQuarrie, D. A. Statistical Mechanics; Harpers & Row: New York, 1976.
- 5 MacKerell, A., Jr., et al. J Phys Chem B 1998, 102, 3586.
- 6 Chen, B.; Martin, M. G.; Siepmann, J. I. J Phys Chem B 1998, 102, 2578.
- 7 Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Mertz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J Am Chem Soc 1995, 117, 5179.
- 8 Bernal, J. D.; Fowler, R. H. J Chem Phys 1933, 1, 515.
- 9 Stillinger, F. H.; David, C. J Chem Phys 1979, 71, 1647.
- 10 Sprik, M. J Phys Chem 1991, 95, 2283.
- 11 Deng, Z.; Klein, M. L.; Martyna, G. J. J Chem Phys 1994, 100, 7590.
- 12 Catlow, C. R. A.; Freeman, C. M.; Vessal, B.; Tomlinson, S. M.; Leslie, M. J Chem Soc Faraday Trans 1991, 87, 1947.
- 13 Madden, P. A.; Wilson, M. Chem Soc Rev 1996, 25, 339.
- 14 Warshel, A.; Weiss, R. M. J Am Chem Soc 1980, 102, 6218.
- 15 Car, R.; Parrinello, M. Phys Rev Lett 1985, 55, 2471.
- 16 Remler, D. K.; Madden, P. A. Mol Phys 1990, 70, 921.
- 17 Payne, M. C.; Teter, M.; Allan, D. C.; Aria, T. A.; Joannopolous, J. D. Rev Mod Phys 2002, 64.
- 18 Galli, G.; Parrinello, M. Comput Simulat Mater Sci 1991, 3, 283.
- 19 Tuckerman, M. E.; Ungar, P. J.; von Rosenvinge, T.; Klein, M. L. J Phys Chem 1996, 100, 12878.
- 20 Gillan, M. J. Contemp Phys 1997, 38, 115.
- 21 Parrinello, M. Solid State Commun 1997, 102, 107.
- 22 Marx, D.; Hutter, J. In Modern Methods and Algorithms of Quantum Chemistry; J. Grotendorst Ed.; Forschungszentrum: Juelich ( NIC Series), 2000, p. 301, vol. 1.
- 23
Car, R.
Quant Struct Act Rel
2002,
21,
97.
10.1002/1521-3838(200207)21:2<97::AID-QSAR97>3.0.CO;2-6 Google Scholar
- 24 Tuckerman, M. E. J Phys Condensed Matter 2002, 14, R1297.
- 25 Silvestrelli, P. L.; Parrinello, M. Phys Rev Lett 1999, 82, 3308.
- 26 Pasquarello, A.; Petri, I.; Salmon, P. S.; Parisel, O.; Car, R.; Toth, E.; Powell, D. H.; Fischer, H. E.; Heim, L.; Merbach, A. E. Science 2001, 291, 856.
- 27 Deng, Z.; Martyna, G. J.; Klein, M. L. Phys Rev Lett 1992, 68, 2496.
- 28 Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. Nature 1999, 367, 601.
- 29 Geissler, P. L.; Dellago, C.; Chandler, D.; Hutter, J.; Parrinello, M. Science 2001, 291, 2121.
- 30 Tuckerman, M. E.; Marx, D.; Parrinello, M. Nature 2002, 417, 925.
- 31 Boero, M.; Parrinello, M.; Terakura, K. J Am Chem Soc 1998, 120, 2746.
- 32 Charlier, J. C.; De Vita, A.; Blase, X.; Car, R. Science 1997, 275, 646.
- 33 De Vita, A.; Galli, G.; Canning, A.; Car, R. Nature 1996, 379, 523.
- 34 Galli, G.; Martin, R. M.; Car, R.; Parrinello, M. Science 1990, 250, 1547.
- 35 Carloni, P.; Bloechl, P. E.; Parrinello, M. J Phys Chem 1995, 99, 1338.
- 36 Alfe, D.; Gillan, M. J.; Price, G. D. Nature 1999, 401, 462.
- 37 Cavazzoni, C.; Chiarotti, G. L.; Scandolo, S.; Parrinello, M. Science 1999, 283, 44.
- 38 Kohn, W.; Sham, L. J. Phys Rev 1965, 140, A1133.
- 39 Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, 1989.
- 40
Dreizler, R. M.;
Gross, E. K. U.
Density Functional Theory;
Springer-Verlag:
Berlin,
1990.
10.1007/978-3-642-86105-5 Google Scholar
- 41 Warshel, A.; Levitt, M. J Mol Biol 1976, 103, 227.
- 42 Yarne, D. A.; Tuckerman, M. E.; Martyna, G. J. J Chem Phys 2001, 115, 3531.
- 43 Zhang, Y.; Lee, T.; Yang, W. J Chem Phys 1999, 110, 46.
- 44 Eichinger, M.; Tavan, P.; Hutter, J.; Parrinello, M. J Chem Phys 1999, 110, 10452.
- 45 Allen, F., et al. IBM Syst J 2001, 40, 310.
- 46 Tuckerman, M. E.; Yarne, D. A.; Samuelson, S. O.; Hughes, A. L.; Martyna, G. J. Comp Phys Comm 2000, 128, 333.
- 47
Kale, L. V.;
Krishnan, S.
Sigplan Notices
1993,
28,
91.
10.1145/167962.165874 Google Scholar
- 48 Kale, L. V.; Bhandarkar, M.; Brunner, R. Lect Notes Comput Sci 1998, 1388, 111.
- 49 Perdew, J. P.; Zunger, A. Phys Rev B 1981, 23, 5048.
- 50 Becke, A. D. Phys Rev A 1988, 38, 3098.
- 51 Lee, C.; Yang, W.; Parr, R. G. Phys Rev B 1988, 37, 785.
- 52 Bachelet, G.; Hamann, D.; Schluter, M. Phys Rev B 1982, 26, 4199.
- 53 Martyna, G. J.; Tuckerman, M. E. J Chem Phys 1999, 110, 2810.
- 54 Minary, P.; Tuckerman, M. E.; Pihakari, K. A.; Martyna, G. J. J Chem Phys 2002, 116, 5351.
- 55 White, J. A.; Bird, D. M. Phys Rev B 1994, 50, 4954.
- 56 Kleinman, L.; Bylander, D. M. Phys Rev Lett 1982, 48, 1425.
- 57 Hansen, J. P. In MD Simulations of Statistical Mechanical Systems. North Holland Physics: Amsterdam, 1986.
- 58 deLeeuw, S. W.; Perram, J. W.; Smith, E. R. Proc R Soc Lond A 1980, 373, 27.
- 59 Marx, D.; Tuckerman, M. E.; Martyna, G. J. Comp Phys Commun 1999, 118, 166.
- 60 Tuckerman, M. E.; Parrinello, M. J Chem Phys 1994, 101, 1301.
- 61 Tuckerman, M. E.; Parrinello, M. J Chem Phys 1994, 101, 1316.
- 62 Tuckerman, M. E.; Hutter, J.; Parrinello, M. J Chem Phys 1955, 102, 859.
- 63 Lawlor, O.; Kalé, L. V. In Proceedings of International Symposium on Computing in Object-Oriented Parallel Environments, Stanford, CA, June 2001.
- 64 Sky Lawlor, O.; Kalé, L. V. Concurr Comput: Practice Exp 2003, 15, 371.
- 65 Board, J. A.; Cramer, C. E. The 4th Annual Linux Showcase and Conference, 2000, p. 121.
- 66 Haynes, P. D.; Cote, M. Comput Phys Commun 2000, 130, 130.
- 67 Frigo, M.; Johnson, S. G. The Fastest Fourier Transform in the West. Technical Report MIT/LCS/TR-728, 1997.
- 68 Kale, L. V.; Kumar, S.; Vardarajan, K. A Framework for Collective Personalized Communication, Communicated to ipdps 2003. Technical report, Parallel Programming Laboratory, Department of Computer Science, University of Illinois at Urbana–Champaign, 2002.
- 69 Kale, L. V.; Kumar, S. Scaling Collective Multicast on High Performance Clusters. Technical report, Parallel Programming Laboratory, Department of Computer Science, University of Illinois at Urbana–Champaign, 2003.
- 70 Tuckerman, M. E.; Marx, D.; Klein, M. L.; Parrinello, M. Science 1997, 275, 817.