In vitro evaluation of poly (lactic-co-glycolic acid)/polyisoprene fibers for soft tissue engineering
Corresponding Author
Douglas R. Marques
Universidade Federal do Rio Grande do Sul, School of Engineering, Porto Alegre, Brazil
University of Manchester, School of Materials, Manchester, United Kingdom
Correspondence to: D.R. Marques; e-mail: [email protected]Search for more papers by this authorLuís A. L. dos Santos
Universidade Federal do Rio Grande do Sul, School of Engineering, Porto Alegre, Brazil
Search for more papers by this authorMarie A. O'Brien
University of Manchester, School of Materials, Manchester, United Kingdom
Search for more papers by this authorSarah H. Cartmell
University of Manchester, School of Materials, Manchester, United Kingdom
Search for more papers by this authorJulie E. Gough
University of Manchester, School of Materials, Manchester, United Kingdom
Search for more papers by this authorCorresponding Author
Douglas R. Marques
Universidade Federal do Rio Grande do Sul, School of Engineering, Porto Alegre, Brazil
University of Manchester, School of Materials, Manchester, United Kingdom
Correspondence to: D.R. Marques; e-mail: [email protected]Search for more papers by this authorLuís A. L. dos Santos
Universidade Federal do Rio Grande do Sul, School of Engineering, Porto Alegre, Brazil
Search for more papers by this authorMarie A. O'Brien
University of Manchester, School of Materials, Manchester, United Kingdom
Search for more papers by this authorSarah H. Cartmell
University of Manchester, School of Materials, Manchester, United Kingdom
Search for more papers by this authorJulie E. Gough
University of Manchester, School of Materials, Manchester, United Kingdom
Search for more papers by this authorAbstract
The polymeric blend of poly (lactic-co-glycolic acid) (PLGA) and polyisoprene (PI) has recently been explored for application as stents for tracheal stenosis and spring for the treatment of craniosynostosis. From the positive results presented in other biomedical applications comes the possibility of investigating the application of this material as scaffold for tissue engineering (TE), acquiring a deeper knowledge about the polymeric blend by exploring a new processing technique while attending to the most fundamental demands of TE scaffolds. PLGA/PI was processed into randomly oriented microfibers through the dripping technique and submitted to physical-chemical and in vitro characterization. The production process of fibers did not show an effect over the polymer's chemical composition, despite the fact that PLGA and PI were observed to be immiscible. Mechanical assays reinforce the suitability of these scaffolds for soft tissue applications. Skeletal muscle cells demonstrated increases in metabolic activity and proliferation to the same levels of the control group. Human dermal fibroblasts didn't show the same behaviour, but presented cell growth with the same development profile as presented in the control group. It is plausible to believe that PLGA/PI fibrous three-dimensional scaffolds are suitable for applications in soft tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2581–2591, 2017.
REFERENCES
- 1 Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. TIBTECH 1998, 16: 224–230.
- 2 Sachols E, Czernuszka JT. Making tissue engineering scaffolds work: Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cells Mater 2003, 5: 29–40.
- 3 Zhang Y, Cai X, Choi SW, Kim C, Wang LV, Xia Y. Chronic label-free volumetric photoacoustic microscopy of melanoma cells in three-dimensional porous scaffolds. Biomaterials 2010; 31: 8651–8658.
- 4 Mccullen SD, Chow AGY, Stevens MM. In vivo tissue engineering of musculoskeletal tissues. Curr Opin Biotechnol 2011; 22: 715–720.
- 5 Shalumon KT, Deepthy S, Anupama MS, Nair SV, Jayakumar R, Chennazhi KP. Fabrication of poly (L-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering. Int J Biol Macromol 2014; 72: 1048–1055.
- 6 Singh UV, Udupa N. In vitro characterization of methotrexate loaded poly (lactic-co-glycolic) acid microspheres and antitumor efficacy in sarcoma-180 mice bearing tumor. Pharm Acta Helv 1997; 72: 165–173.
- 7 Aviss KJ, Gough JE, Downes S. Aligned electrospun polymer fibres for skeletal muscle regeneration. Eur Cells Mater 2010; 19: 193–204.
- 8 Hughes LA, Gaston J, McAlindon K, Woohouse KA, Thibeault SL. Electrospun fiber constructs for vocal fold tissue engineering: Effects of alignment and elastomeric polypeptide coating. Acta Biomater 2015; 13: 111–120.
- 9 Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna S. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 2015: 24.
- 10 Piskin E, Isoglu A, Bölgen N, Vargel I, Griffiths S, Çavusoglu T, Korkusuz P, Güzel E, Cartmell S. In vivo performance of simvastatin-loaded electrospun spiral-wound polycaprolactone scaffolds in reconstruction of cranial bone defects in the rat model. J Biomed Mater Res Part A 2008; 90A: 1137–1151.
- 11 Smith IO, Liu XH, Smith LA, Ma PX. Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 2009; 1: 226–236.
- 12 Vasita R, Katti DS.Nanofibers and their applications in tissue engineering. Int J Nanomed 2006; 1: 15–30.
- 13 Yang F, Qu X, Cui W, Bei J, Yu F, Lu S, Wang S. Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds. Biomaterials 2006; 27: 4923–4933.
- 14 Vasconcellos LA, dos Santos LA. Calcium phosphate cement scaffolds constructed with PLGA fibers. VII Congresso Latino Americano de Órgãos Artificiais e Biomateriais – COLAOB 2012.
- 15 dos Santos LA, Sousa VC, Bergmann CP, Vasconcellos LA. Processo de produção de polímeros em fibras. Patent registration number: 0000221109247952. 2011.
- 16 Vasconcellos LA, dos Santos LA. Study and evaluation of sodium alginate fibers scaffolds and scaffolds with α-TCP plus sodium alginate fibers. VII Congresso Latino Americano de Órgãos Artificiais e Biomateriais – COLAOB 2012.
- 17 Vasconcellos LA, dos Santos LA. Calcium phosphate cement scaffolds with PLGA fibers. Mater Sci Eng C 2013; 33: 1032–1040.
- 18 Pandey A, Pandey GC, Aswath PB. Synthesis of polylactic acid–polyglycolic acid blends using microwave radiation. J Mech Behav Biomed Mater 2008: 227–233.
- 19 Isotalo TM, Nuutine JP, Vaajanen A, Martikainen PM, Laurila M, Törmälä P, Talja M, Tammela TL. Biocompatibility properties of a new braided biodegradable urethral stent: A comparison with a biodegradable spiral and a braile metallis stent in the rabbit urethra. BJU Int 2005; 97: 856–859.
- 20 Jin HJ, Chin IJ, Kim MN, Kim SH, Yoon JS. Blending of poly (l-lactic acid) with poly (cis-1,4-isoprene). Eur Polym J 2000; 36: 165–169.
- 21 Sampaio RB. Neovascularização retiniana induzida por fração angiogênica derivada do látex: Modelo experimental em coelhos. Ribeirão Preto: Universidade de São Paulo; 2007. p 100.
- 22 Marques DR, dos Santos LA, Sousa VC, Sanches PRS, Macedo Neto AV. Blendas Poliméricas de Poli (Ácido Láctico-co-Glicólico) e Poliisopreno. Patent registration number: 0000221010682444. 2011.
- 23Universidade Federal do Rio Grande do Sul. Pedido de Registro de Marca de Produto (Nominativa). Patent registration number: 906982910. 2013.
- 24 Tsutsui H, Kubota M, Yamada M, Suzuki A, Usuda J, Shibuya H, Miyajima K, Sugino K, Ito K, Furukawa K, Kato H. Airway stenting for the treatment of laryngotracheal stenosis secondary to thyroid cancer. Asian Pac Soc Respirol 2008; 13: 632–638.
- 25 Wood DE, Liu YH, Vallières E, Jones RK, Mulligan MS. Airway stenting for malignant and benign tracheobronchial stenosis. Annals Thorac Surg 2003; 76: 167–174.
- 26 Marques DR, dos Santos LA, Schopf LF, Fraga JCS. Analysis of poly (lactic-co-glycolic acid)/poly (isoprene) polymeric blend for application as biomaterial. Polim: Cienc Tecnol 2013; 23: 579–584.
- 27 Di Rocco F, Arnaud E, Meyer P, Sainte-Rose C, Renier D. Focus session on the changing “epidemiology” of craniosynostosis (comparing two quinquennia: 1985-1989 and 2003-2007) and its impact on the daily clinical practice: A review from necker enfants malades. Child Nerv Syst 2009; 25: 807–811.
- 28 Kolar J. An epidemiological study of nonsyndromal craniosynostoses. J Craniofacial Surg 2011; 22: 47–49.
- 29 Teichgraeber JF, Baumgartner JJE, Viviano SL, Gateno J, Xia JJ. Microscopic versus open approach to craniosynostosis: A long-term outcomes comparison. J Craniofacial Surg 2015; 25: 1245–1248.
- 30 Guimarães-Ferreira JPS, Gewalli F, David L, Maltese G, Heino H, Lauritzen C. Calvarial bone distraction with a contractile bioresorbable polymer. Plast Reconstr Surg 2002; 109: 1325–1331.
- 31
Linden OE,
Baratta VM,
Byrne MM,
Klinge PM,
Sullivan SR,
Taylor HOB. Surgical correction for metopic craniosynostosis: A 3D photogrammetric analysis of cranial vault outcomes. Plast Surg Res Counc 2015: 63–64.
10.1097/01.prs.0000465532.28239.cd Google Scholar
- 32 Pearson GD, Havlik RJ, Eppley B, Nykiel M, Sadove AM. Craniosynostosis: A single institution's outcome assessment from surgical reconstruction. J Craniofacial Surg 2008; 19: 65–71.
- 33 Dornelles RFV, Cardim VL, Martins MT, Pinto ACCF, Alonso N. Spring-mediated skull expansion: Overall effects in sutural and parasutural areas: An experimental study in rabbits. Acta Cirurg Bras 2010; 25: 169–175.
- 34 Faller G, dos Santos LA, Marques D, Collares MV. Development and testing of an absorbable spring for cranial expansion in rabbits. J Craniomaxillofac Surg 2015; 43: 1269–1276.
- 35 Kim JH, Marques DR, Faller GJ, Collares MV, Rodriguez R, dos Santos LA, Dias DS. Experimental comparative study of the histotoxicity of poly(lactic-co-glycolic acid) copolymer and poly(lactic-co-glycolic acid)-poly(isoprene) blend. Polim: Cienc Tecnol 2014; 24: 529–535.
- 36 Tsuneizumi Y, Kuwahara M, Okamoto K, Matsumura S. Chemical recycling of poly (lactic acid)-based polymer blends using environmentally benign catalysts. Polym Degrad Stab 2010; 95: 1387–1393.
- 37 Zhang R, Ma PX. Poly (α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue. I: Preparation and morphology. J Biomed Mater Res 1998; 44: 446–455.
- 38 Cibulková Z, Polovková J, Lukes V, Klein E. DSC and FTIR study of the gamma radiation effect on cis-1,4-polyisoprene. J Therm Anal Calorim 2006; 84: 709–713.
- 39 Motta AC, Duek EAR. Síntese, caracterização e degradação “in vitro” do poli(L-ácido láctico). Polim: Cienc Tecnol 2006; 16: 340–350.
- 40 Queiroz DP. Diagrama de fases, propriedades térmicas e morfológicas de blendas de poli (ácido láctico) e poli (metacrilato de metila). Campinas: Universidade Estadual de Campinas; 2000. p 127.
- 41
Klöpffer W. Introduction to polymer spectroscopy. Frankfurt: Springer-Verlag; 1984. p 184.
10.1007/978-3-642-69373-1 Google Scholar
- 42 Chen F, Qian J. Studies on the thermal degradation of cis-1,4-polyisoprene. Fuel. 2002; 81: 2071–2077.
- 43 Silverstein RM, Webster FX, Kiemle DJ. Identificação Espectrométrica de Compostos Orgânicos. Rio de Janeiro: LTC; 2005. p 508.
- 44 Canevarolo SV Jr. Técnicas de Caracterização de Polímeros. São Paulo: Artliber Edirtora; 2003. p 448.
- 45 Lucas EF, Soares BG, Monteiro E. Caracterização de Polímeros: Determinação de Peso Molecular e Análise Térmica. Rio de Janeiro: e-Papers Serviços Editoriais; 2001. p 366.
- 46 Akcelrud L. Fundamentos da Ciência dos Polímeros. Barueri: Editora Manole; 2007. p 306.
- 47 Rezende CMF, Silva MC, Laranjeira MG, Borges APB. Estudo experimental do poliuretano de óleo de mamona (ricinus communis) como substituto parcial do tendão calcâneo comum em coelhos (oryctolagus cuniculus). Arq Bras Med Vet Zootec 2001; 53: 695–700.
- 48 Marques DR. Obtenção e caracterização de blendas poliméricas de poli (ácido láctico-co-glicólico) e poliisopreno para aplicação como biomaterial. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2011. p 121.
- 49 Kadla J, Kubo S. Lignin-based polymer blends: Analysis of intermolecular interactios in lignin-synthetic polymer blends. Compos Part A 2003; 35: 395–400.
- 50 Parashar P, Ramakrishna K, Ramaprasad AT. A study on compatibility of polymer blends of polystyrene/poly(4-vinylpyridine). J Appl Polym Sci 2010; 120: 1729–1735.
- 51 Eichhorn SJ, Sampson WW. Relationships between specific surface area and pore size in electrospun polymer fibre networks. J R Soc Interface 2010; 7: 641–649.
- 52 Wimpenny I, Ashammakhi N, Yang Y. Chondrogenic potential of electrospun nanofibres for cartilage tissue engineering. J Tissue Eng Regen Med 2012; 6: 536–549.
- 53 He L, Liao S, Quan D, Ma K, Chan C, Ramakrishna S, Lu J. Synergistic effects of electrospun PLLA fiber dimension and pattern on neonatal mouse cerebellum C17.2 stem cells. Acta Biomater 2010; 6: 2960–2969.
- 54 Hong JK, Madihally SV. Next generation of electrosprayed fibers for tissue regeneration. Tissue Eng Part B 2011; 17: 125–142.
- 55 Shanmugasundaram S, Chaudhry H, Arinzeh TL. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng Part A 2011; 17: 831–840.
- 56 Ben-Nissan B, Milev A, Vago R. Morphology of sol–gel derived nano-coated coralline hydroxyapatite. Biomaterials 2004; 25: 4971–4975.
- 57 Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly (D,L -lactic-co-glycolic acid) meshes. Biomaterials 2006; 27: 5681–5688.
- 58 Shi G, Cai Q, Wang C, Lu N, Wang S, Bei J. Fabrication and biocompatibility of cell scaffolds of poly (l-lactic acid) and poly (L-lactic-co-glycolic acid). Polym Adv Technol 2002; 13: 227–232.
- 59 Helen W, Gough JE. Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within pdlla/bioglass composite foam scaffolds in vitro. Acta Biomater 2008; 4: 230–243.
- 60 Penk A, Föster Y, Scheidt HA, Nimptsch A, Hacker MC, Schulz-Siegmund M, Ahnert P, Schiller J, Rammelt S, Huster D. The pore size of plga bone implants determines the de novo formation of bone tissue in tibial head defects in rats. Magn Reson Med 2013; 70: 925–935.
- 61 Rnjak-Kovacina J, Wise SG, Li Z, Maitz PKM, Young CJ, Wang Y, Weiss AS. Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering. Acta Biomater 2012; 8: 3714–3722.
- 62 Engler JA, Griffin MA, Sen S, Bönnemann CG, Sweeney HL, Discher DE. Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. J Cell Biol 2004; 166: 877–887.
- 63
Ma PX,
Zhang R. Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 2001; 56: 469–477.
10.1002/1097-4636(20010915)56:4<469::AID-JBM1118>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 64 Liu X, Won Y, Ma PX. Porogen-induced surface modification of nano-fibrous poly(l-lactic acid) scaffolds for tissue engineering. Biomaterials 2006; 26: 3980–3987.
- 65 Bassi AK, Gough JE, Zakikhani M, Downes S. The chemical and physical properties of poly(ε-caprolactone) scaffolds functionalised with poly(vinyl phosphonic acid-co-acrylic acid). J Tissue Eng 2011; 2: 9.
- 66 Eosoly S, Vrana NE, Lohfeld S, Hindie M, Looney L. Interaction of cell culture with composition effects on the mechanical properties of polycaprolactone-hydroxyapatite scaffolds fabricated via selective laser sintering (SLS). Mater Sci Eng C 2012; 32: 2250–2257.
- 67 Wang H, Feng Y, Fang Z, Yuan W, Khan M. Co-electrospun blends of pu and peg as potential biocompatible scaffolds for small-diameter vascular tissue engineering. Mater Sci Eng C 2012; 32: 2306–2315.
- 68 Bach AD, Beier JP, Stern-Staeter J, Horch RE. Skeletal muscle tissue engineering. J Cell Mol Med 2004; 8: 413–422.
- 69 Dugan JM, Gough JE, Eichhorn SJ. Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromolecules 2010; 11: 2498–2504.
- 70 Bhat S, Kumar A. Cell proliferation on three-dimensional chitosan-agarose-gelatin cryogel scaffolds for tissue engineering applications. J Biosci Bioeng 2012; 114: 663–670.
- 71 Hanauer N, Latreille PL, Alsharif S, Banquy X. 2D, 3D and 4D active compound delivery in tissue engineering and regenerative. Curr Pharm Des 2015; 21: 1506–1516.
- 72 Jayawarna V, Richardson SM, Hirst AR, Hodson NW, Saiani A, Gough JE, Ulijn RV. Introducing chemical functionality in fmoc-peptide gels for cell culture. Acta Biomater 2009; 5: 934–943.
- 73 Sankar D, Chennazhi KP, Nair SV, Jayakumar R. Fabrication of chitin/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) hydrogel scaffold. Carbohydr Polym 2012; 90: 725–729.
- 74 Zhou M, Smith AM, Das AK, Hodson NW, Collins RF, Ulijn RV, Hough JE. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 2009; 30: 2523–2530.
- 75 Petrigliano FA, Arom GA, Nazemi NA, Yeranosian MG, Wu BM, McAllister DR. In vivo evaluation of electrospun polycaprolactone graft for anterior cruciate ligament engineering. Tissue Eng Part A 2014; 21: 1228–1236.
- 76 Sundaramurthi D, Vasanthan KS, Kuppan P, Krishnan UM, Sethuraman S. Electrospun nanostructured chitosan–poly(vinyl alcohol) scaffolds: A biomimetic extracellular matrix as dermal substitute. Biomed Mater 2012: 12.
- 77 Balabanian CA, Coutinho-Netto J, Lamano-Carvalho TL, Lacerda SA, Brentegani LG. Biocompatibility of natural latex implanted into dental alveolus of rats. J Oral Sci 2006; 48: 201–205.
- 78 Friolani M. Utilização de membrana de látex de seringueira (hevea brasiliensis) em lesões diafragmáticas de coelhos: estudo experimental. Jaboticabal: Universidade Estadual Paulista; 2008. p 47.
- 79
Oliveira JAA,
Hyppolito MA,
Coutinho-Netto J,
Mrué F. Miringoplastia com a utilização de um novo material biosintético. Rev Bras Otorrinolaringol 2003; 69: 649–655.
10.1590/S0034-72992003000500010 Google Scholar