Substitutional limit of gadolinium in β-tricalcium phosphate and its magnetic resonance imaging characteristics
Rugmani Meenambal
Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605 014 India
Search for more papers by this authorPavan Poojar
Medical Imaging Research Centre, Dayananda Sagar Institutions, Bangalore, India
Search for more papers by this authorSairam Geethanath
Medical Imaging Research Centre, Dayananda Sagar Institutions, Bangalore, India
Search for more papers by this authorCorresponding Author
S. Kannan
Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605 014 India
Correspondence to: S. Kannan; e-mail: [email protected]Search for more papers by this authorRugmani Meenambal
Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605 014 India
Search for more papers by this authorPavan Poojar
Medical Imaging Research Centre, Dayananda Sagar Institutions, Bangalore, India
Search for more papers by this authorSairam Geethanath
Medical Imaging Research Centre, Dayananda Sagar Institutions, Bangalore, India
Search for more papers by this authorCorresponding Author
S. Kannan
Centre for Nanoscience and Technology, Pondicherry University, Puducherry, 605 014 India
Correspondence to: S. Kannan; e-mail: [email protected]Search for more papers by this authorAbstract
To compensate the limitations of bone tissue magnetic resonance imaging (MRI), a series of gadolinium (Gd3+) substituted β-Tricalcium phosphate [β-TCP, β-Ca3(PO4)2] were developed. All the powders were characterized using XRD, Raman spectroscopy, Rietveld refinement of the XRD data and the studies confirmed the Gd3+ occupancy at Ca2+(1), Ca2+(2) and Ca2+(3) lattice sites of β-Ca3(PO4)2. HR-TEM analysis revealed the spherical nature of particles with diameter about 100 nm. The Gd3+ doped β-Ca3(PO4)2 exhibited non-toxic behaviour to MG-63 cells in vitro and the room temperature magnetic field versus magnetization measurements confirmed its paramagnetic behaviour. MRI analysis revelas that it shorten both T1 and T2 proton relaxation times, thus influencing both r1 and r2 relaxivity values that reach 61.97 mM−1s−1 and 73.35 mM−1s−1. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2545–2552, 2017.
REFERENCES
- 1 Chou J, Hao J, Hatoyama H, Ben-Nissan B, Milthorpe B, Otsuka M. Effect of biomimetic zinc-containing tricalcium phosphate (Zn–TCP) on the growth and osteogenic differentiation of mesenchymal stem cells. J Tissue Eng Regen Med 2015; 9: 852–858.
- 2 Matsumoto N, Yoshida K, Hashimoto K, Toda Y. Preparation and characterization of Eu3+ ion in Mg- substituted tricalcium phosphate phosphors. J Am Ceram Soc 2010; 93: 3663–3670.
- 3 Amer W, Abdelouahdi K, Ramananarivo HR, Zahouily M, Fihri A, Djessas K, Zahouily K, Varmaf RS, Solhy A. Microwave-assisted synthesis of mesoporous nano-hydroxyapatite using surfactant templates. Cryst Eng Comm 2014; 16: 543–549.
- 4 Kannan S, Lemos AF, Rocha JHG, Ferreira JMF. Characterization and mechanical performance of the Mg-stabilized β-Ca3(PO4)2 prepared from Mg-substituted Ca-deficient apatite. J Am Ceram Soc 2006; 89: 2757–2761.
- 5 Sun J, Mi X, Lei L, Pan X, Chen S, Wang Z, Baia Z, Zhanga X. Hydrothermal synthesis and photoluminescence properties of Ca9Eu(PO4)7 nanophosphors. Cryst Eng Commun 2015; 17: 7888–7895.
- 6 Zhu G, Zhao R, Lia Y, Tang R. Multifunctional Gd, Ce, Tb co-doped β-tricalcium phosphate porous nanospheres for sustained drug release and bioimaging, J Mater Chem B 2016; 4: 3903–3910.
- 7 Hartman EM, Pikkemaat J, Vehof JM, Heerschap A, Jansen J, Spauwen PM., In vivo magnetic resonance imaging explorative study of ectopic bone formation in the rat.Tissue Eng 2002; 8: 1029–1033.
- 8 Li Y, Beija M, Laurent S, vander Elst L, Muller R.N., Duong HTT, Lowe AB, Davis TP, Boyer C. Macromolecular ligands for gadolinium MRI contrast agents. Macromolecules 2012; 45: 4196–4204.
- 9 Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium (III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem Rev 1999; 99: 2293–2352.
- 10 Yashima M, Sakai A, Kamiyama T, Hoshikawa A. Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. J Solid State Chem 2003; 175: 272–277.
- 11 Mi JSX, Lei L, Pan X, Chen S, Wang Z, Bai Z, Zhang X. Hydrothermal synthesis and photoluminescence properties of Ca9Eu(PO4)7 nanophosphors. Cryst Eng Commun 2015; 17: 7888–7895.
- 12 Meenambal R, Singh RK, Nandha Kumar P, Kannan S. Synthesis, structure, thermal stability, mechanical and antibacterial behaviour of lanthanum (La3+) substitutions in β-tricalcium phosphate. Mater Sci Eng C 2014; 43: 598–606.
- 13 Larson AC, Von Dreele R. General Structure Analysis System (GSAS). LAUR Los Alamos National Laboratory. Report LAUR 2004; 86–748.
- 14 Mullica F, Grossie DA, Boatner LA. Coordination geometry and structural determinations of SmPO4, EuPO4 and GdPO4. Inorg Chim Acta 1985; 109: 105–110
- 15 Singh RK, Awasthi S, Dhayalan A, Ferreira JMF, Kannan S. Deposition, structure, physical and invitro characteristics of Ag-doped β-Ca3(PO4)2/chitosan hybrid composite coatings on Titanium metal. Mater Sci Eng C 2016; 62: 692–701.
- 16 Li X, Welch EB, Chakravarthy AB, Xu L, Arlinghaus LR, Farley J, Mayer IA, Kelley MC, Meszoely IM, Means-Powell J, Abramson VG, Grau AM, Gore JC, Yankeelov TE. Statistical comparison of dynamic contrast-enhanced MRI pharmacokinetic models in human breast cancer. Magn Reson Med 2012; 68: 261–271.
- 17 Carneiro AAO, Vilela GR, Araujo DBD, Baffa O. MRI relaxometry: Methods and applications. Braz J Phys 2006; 36: 9–15.
- 18 Koenig SH, Kellar KE. Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med 1995; 34: 227–233.
- 19 Kannan S, Goetz-Neunhoeffer F, Neubauer J, Ferreira JMF. Cosubstitution of zinc and strontium in β-tricalcium phosphate: Synthesis and characterization. J Am Ceram Soc 2011; 94: 230–235.
- 20 Quillard S, Paris M, Deniard P, Gildenhaar R, Berger G, Obadia L, Bouler JM, Structural and spectroscopic characterization of a series of potassium- and/or sodium-substituted β-tricalcium phosphate. Acta Biomater 2011; 7: 1844–1852.
- 21 Kim EJ, Choi SW, Hong SH. Synthesis and photoluminescence properties of Eu3+-doped calcium phosphates. J Am Ceram Soc 2007; 90: 2795–2798.
- 22 Jillavenkatesa A & Condrate RA. The infrared and Raman spectra of beta- and alpha-tricalcium phosphate (Ca3(PO4)2). Spectrosc Lett 1998; 31: 1619–1634.
- 23 Dinh CT, Huong PV, Olazcuaga R, Fouassier C. Syntheses, structures and Raman spectra of luminescent gadolinium phosphates J Optoelectron Adv Med 2000; 2: 159–169.
- 24 Wu E, Kisi EH, Gray Mac AE. Modelling dislocation induced anisotropic line broadening in rietveld refinement using a voigt function. II. Application of neutron powder diffraction data. J Appl Crystallogr 1998; 31: 363–368.
- 25 Behera PS, Vasanthavel S, Ponnilavan V, Kannan S. Influence of gadolinium content on the tetragonal to cubic phase transition in zirconia-silica binary oxides. J Solid State Chem 2015; 225: 305–309.
- 26 Zhu J, Zhou J, Weia D, Liu S, Multifunctional magnetic-fluorescent CdS@Gd–DTPA hierarchical hollow nanospheres: Preparation and potential application in drug delivery. Cryst Eng Commun 2013; 15: 6221–6228.
- 27 H. H. Alder, P. K. Kerr. Variation in infrared spectra, molecular symmetry and site symmetry of sulphate minerals. Am Miner 1965; 50: 132–147.
- 28 Fowler BO. Infrared studies of apatites. II. Preparation of normal and isotopically substituted calcium, strontium, and barium hydroxyapatites and spectra structure-composition correlations. Inorg Chem 1974; 13: 207–214.
- 29 Alder HH, Kerr PK. Infrared absorption frequency trends for anhydrous normal carbonates. Amer Mineral 1963; 48: 124–137.
- 30 Kawabata K, Yamamoto T, Kitada A. Substitution mechanism of Zn ions in β-tricalcium phosphate. Physica B Condensed Matter 2011; 406: 890–894.
- 31 Enderle R, Goetz-Neunhoeffer F, Gobbels M, Muller FA, Greil P.Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement. Biomaterials 2005; 26: 3379–3384.
- 32 Kannan S, Goetz-Neunhoeffer F, Neubauer J, Pina S, Torres PMC, Ferreira JMF. Synthesis and structural characterization of strontium- and magnesium-co-substituted β-tricalcium phosphate. Acta Biomater 2010; 6: 571–576.
- 33 Bessiere A, Benhamou RA, Wallez G, Lecointre A, Viana B, Site occupancy and mechanisms of thermally stimulated luminescence in Ca9Ln(PO4)7 (Ln = lanthanide). Acta Mater 2012; 60: 6641–6649.
- 34 Benhamou RA, Bessiere A, Wallez G, Viana B, Elaatmani M, Daoud M, Zegzouti A. New insight in the structure–luminescence relationships of Ca9Eu(PO4)7. J Solid State Chem 2009; 182: 2319–2325.
- 35 Matsumoto N, Sato K, Yoshida K, Hashimoto K, Toda Y. Preparation and characterization of β-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions. Acta Biomater 2009; 5: 3157–3164.
- 36 Gai S, Yang P, Wang D, Li C, Niu N, Hea F, Li X. Monodisperse Gd2O3:Ln (Ln = Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties. Cryst Eng Commun 2011; 13: 5480–5487.
- 37 Li G, Liang Y, Zhang M, Yu D.Size-tunable synthesis and luminescent properties of Gd(OH)3:Eu3+ and Gd2O3:Eu3+ hexagonal nano-/microprisms. Cryst Eng Commun 2014; 16: 6670–6679.
- 38 Peng J, Hojamberdiev M, Xu Y, Cao B, Wang J, Wu H, Mag J. Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. Mag. Mater. 2011; 323: 133–138.
- 39 Xu Wand Lu YA. Smart magnetic resonance imaging contrast agent responsive to adenosine based on a DNA aptamer-conjugated gadolinium complex. Chem Commun 2011; 47: 4998–5000.
- 40 Garimella PD, Datta A, Romanini DW, Raymond KN, Francis MB.Multivalent, high-relaxivity MRI contrast agents using rigid cysteine-reactive gadolinium complexes. J Am Chem Soc 2011; 133: 14704–14709.