Exudation of additives to the surface of medical devices: impact on biocompatibility in the case of polyurethane used in implantable catheters
Micheal Nouman
Université Paris-Sud, EA401 Matériaux et Santé, IFR 141, Faculté De Pharmacie, Châtenay Malabry, France
Search for more papers by this authorCorresponding Author
Emile Jubeli
Université Paris-Sud, EA401 Matériaux et Santé, IFR 141, Faculté De Pharmacie, Châtenay Malabry, France
Correspondence to: E. Jubeli; e-mail: [email protected]Search for more papers by this authorJohanna Saunier
Université Paris-Sud, EA401 Matériaux et Santé, IFR 141, Faculté De Pharmacie, Châtenay Malabry, France
Search for more papers by this authorNajet Yagoubi
Université Paris-Sud, EA401 Matériaux et Santé, IFR 141, Faculté De Pharmacie, Châtenay Malabry, France
Search for more papers by this authorMicheal Nouman
Université Paris-Sud, EA401 Matériaux et Santé, IFR 141, Faculté De Pharmacie, Châtenay Malabry, France
Search for more papers by this authorCorresponding Author
Emile Jubeli
Université Paris-Sud, EA401 Matériaux et Santé, IFR 141, Faculté De Pharmacie, Châtenay Malabry, France
Correspondence to: E. Jubeli; e-mail: [email protected]Search for more papers by this authorJohanna Saunier
Université Paris-Sud, EA401 Matériaux et Santé, IFR 141, Faculté De Pharmacie, Châtenay Malabry, France
Search for more papers by this authorNajet Yagoubi
Université Paris-Sud, EA401 Matériaux et Santé, IFR 141, Faculté De Pharmacie, Châtenay Malabry, France
Search for more papers by this authorAbstract
Surface state is one of the most important parameters determining the biocompatibility of an implantable medical device, any change on the surface once in contact with body tissues can impact the biological response (cytotoxicity, inflammation, irritation, thrombosis, etc.). In the present study, we use (Pellethane®) catheter-based polyurethane (PU), because of its many applications in the field of medical devices, to evaluate the impact of additives blooming on the biocompatibility. Four different antioxidants and two anti-ultraviolet stabilizers were included in this study. A comprehensive study was conducted to evaluate the consequences of cellular exposure to theses additives in the following three forms: in dissolved form and after surface blooming, in amorphous and in crystalized ones, and finally in the overall biocompatibility of the native PU. Surface roughness was analyzed with atomic force microscopy. Endothelial cells' viability was studied in contact with all the three physical forms. A preliminary hemocompatibility evaluation was performed through the measurement of whole blood hemolysis, as well as platelet adhesion in contact with the different PU samples. The study of the proinflammatory IL-α and TNF-α production by macrophages in contact with these films is also reported. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2954–2967, 2016.
REFERENCES
- 1 Kumbar S, Laurencin C, Deng M. Natural and Synthetic Biomedical Polymers. Elsevier; 2014.
- 2 Lamba N, Cooper S. Polyurethanes in Biomedical Applications. Boca Raton: CRC Press; 1998.
- 3 Lelah MD, Cooper SL. Polyurethanes in Medicine. Boca Raton, FL: CRC Press; 1986.
- 4 Hergenrother RW, Cooper SL. The in vitro and in vivo biostability of polyurethanes, Presented at the Fourth World Biomaterials Congress, Berlin, Germany; 1992.
- 5 Martineau W, Nolan K. Disposable Medical Supplies Industry Study, 2196. cleveland, oH: The Fredonia Group; 2007.
- 6 lehr P. Global Market for Catheters: Market Research Report. Wellesley, USA: BCC Research; 2012.
- 7 Franson TR, Menon L, Sohnle PG. Persistent in vitro survival of coagulase-negative staphylococci adherent to intravascular catheters in the absence of conventional nutrients. J Clin Microbiol 1986; 24: 559–561.
- 8 Martínez-Martínez L, Pascual A, Perez EJ. Effect of three plastic catheters on survival and growth of Pseudomonas aeruginosa. J Hospital Infection 1990; 16: 311–318.
- 9 Sonnenschein MF. Polyurethanes, Science, Technology, Markets and Trends; 2014.
- 10
Charney W. Epidemic of Medical Errors and Hospital-Acquired Infections: Systemic and Social Causes. CRC Press; 2012.
10.1201/b11563 Google Scholar
- 11 Park K, Mao FW, Park H. Morphological characterization of surface-induced platelet activation. Biomaterials 1990; 11: 24–31.
- 12 Han DK, Jeong SY, Kim YH. Evaluation of blood compatibility of PEO grafted and heparin immobilized polyurethanes. J Biomed Mater Res 1989; 23: 211–228.
- 13 Ito Y, Miyashita K, Kashiwagi T, Imanishi Y. Synthesis and interactions with blood of polyetherurethaneurea/polypeptide block copolymers. Biomater Artif Cells Immobilization Biotechnol 1993; 21: 571–580.
- 14 Costa VSD, Brier-Russell D, Salzman E, Merrill E. ESCA studies of polyurethanes: Blood platelet activation in relation to surface composition. J Colloid Interface Sci 1981; 80: 445–452.
- 15 Engbers GHM, Dost L, Hennink WE, Aarts PAMM, Sixma JJ, Feijen J. An in vitro study of the adhesion of blood platelets onto vascular catheters. Part I. J Biomed Mater Res 1987; 21: 613–627.
- 16 Hanson LAH, Ratner BD, Hoffman AS. Evaluation of artificial surfaces using baboon arteriovenous shunt model. In: Advances in Biomaterials. John Wiley & Sons; 1982. p 519–530.
- 17 Ratner BD, Lenk TJ. Biomaterial surfaces. Biomed Mater 1987; 21: 59–90.
- 18 Lyman DJ, McNeill B, Shibatani K. The effects of chemical structure and surface properties of synthetic polymers on the coagulation of blood. IV. The relation between polymer morphology and protein adsorption. Trans ASAIO 1975; 21: 49–54.
- 19 Keogh JR, Wolf MF, Overend ME, Tang L, Eaton JW. Biocompatibility of sulphonated polyurethane surfaces. Biomaterials 1996; 17: 1987–1994.
- 20 Yuan Y, Ai F, Zang X, Zhuang W, Shen J, Lin S. Polyurethane vascular catheter surface grafted with zwitterionic sulfobetaine monomer activated by ozone. Colloids Surf B: Biointerfaces 2004; 35: 1–5.
- 21 Wang DA, Ji J, Sun YH, Yu GH, Feng LX. Blends of stearyl poly(ethylene oxide) coupling-polymer in chitosan as coating materials for polyurethane intravascular catheters. J Biomed Mater Res 2001; 58: 372–383.
- 22 Peckham SM, Turitto VT, Glantz J, Puryear H, Slack SM. Hemocompatibility studies of surface-treated polyurethane-based chronic indwelling catheters. J Biomater Sci Polym Ed 1997; 8: 847–858.
- 23 Zweifel H. Stabilization of Polymeric Materials. Heidelberg: Springer-Verlag; 1997.
- 24 Zweifel H. Plastics Additives Handbook, 5th ed. Cincinnati: Hanser; 2001.
- 25 Földes E. Transport of small molecules in polyolefins. I. Diffusion of Irganox 1010 in polyethylene. J Appl Polym Sci 1992; 46: 507–515.
- 26 Földes E. Transport of small molecules in polyolefins. II. Diffusion and solubility of Irganox 1076 in ethylene polymers. J Appl Polym Sci 1993; 48: 1905–1913.
- 27 Földes E. Transport of small molecules in polyolefins. III. Diffusion of topanol CA in ethylene polymers. J Appl Polym Sci 1994; 51: 1581–1589.
- 28 Földes E. Mobility of additives in ethylene polymers. Polym Bull 1995; 34, 93–99.
- 29 Spatafore R, Pearson LT. Migration and blooming of stabilizing antioxidants in polypropylene. Polym Eng Sci 1991; 31: 1610–1617.
- 30 Saunier J, Mazel V, Paris C, Yagoubi N. Polymorphism of Irganox 1076: Discovery of new forms and direct characterization of the polymorphs on a medical device by Raman microspectroscopy. Eur J Pharm Biopharm 2010; 75: 443–450.
- 31 Saunier J, Mazel V, Aymes-Chodur C, Yagoubi N. Blooming of Irganox 3114® antioxidant onto a medical grade elastomer. Impact of the recrystallization conditions on the antioxidant polymorphism, on the film wettability and on the antioxidant leachability. Int J Pharm 2012; 437: 89–99.
- 32 Bordenave L, Baquey C, Bareille R, Lefebvre F, Lauroua C, Guerin V, Rouais F, More N, Vergnes C, Anderson JM. Endothelial cell compatibility testing of three different pellethanes. J Biomed Mater Res 1993; 27: 1367–1381.
- 33 Brunstedt MR, Ziats NP, Rose-Caprara V, Hiltner PA, Anderson JM, Lodoen GA, Payet CR. Attachment and proliferation of bovine aortic endothelial cells onto additive modified poly(ether urethane ureas). J Biomed Mater Res 1993; 27: 483–492.
- 34 Tyler BJ, Ratner BD, Castner DG, Briggs D. Variations between Biomer™ lots. I. Significant differences in the surface chemistry of two lots of a commercial poly(ether urethane). J Biomed Mater Res 1992; 26: 273–289.
- 35 Mrad O, Saunier J, Aymes-Chodur C, Mazel V, Rosilio V, Agnely F, Vigneron J, Etcheberry A, Yagoubi N. Aging of a medical device surface following cold plasma treatment: Influence of low molecular weight compounds on surface recovery. Eur Polym J 2011; 47: 2403–2413.
- 36 Mrad O, Saunier J, Aymes-Chodur C, Rosilio V, Bouttier S, Agnely F, Aubert P, Vigneron J, Etcheberry A, Yagoubi N. A multiscale approach to assess the complex surface of polyurethane catheters and the effects of a new plasma decontamination treatment on the surface properties. Microsc Microanal 2010; 16(6) :764–778.
- 37 Saunier J, Herry JM, Marliere C, Renault M, Bellon-Fontaine MN, Yagoubi N. Modification of the bacterial adhesion of Staphylococcus aureus by antioxidant blooming on polyurethane films. Mater Sci Eng C: Mater Biol Appl 2015; 56: 522–531.
- 38 Grabowski N, Hillaireau H, Vergnaud J, Tsapis N, Pallardy M, Kerdine-Römer S, Fattal E. Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. Int J Pharm 2014; 482: 75–83.
- 39
Grunkemeier JM,
Tsai WB,
Horbett TA. Hemocompatibility of treated polystyrene substrates: Contact activation, platelet adhesion, and procoagulant activity of adherent platelets. J Biomed Mater Res 1998; 41: 657–670.
10.1002/(SICI)1097-4636(19980915)41:4<657::AID-JBM18>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 40 Li L, Tu M, Mou S, Zhou C. Preparation and blood compatibility of polysiloxane/liquid-crystal composite membranes. Biomaterials 2001; 22: 2595–2599.
- 41 Braybrook JH, Mackay GA. Supercritical fluid extraction of polymer additives for use in biocompatibility testing. Polym Int 1992; 27: 157–164.
- 42 Wang L, Wu Y, Chen L, Gu Y, Xi T, Zhang A, Feng ZG. Fabrication and evaluation of tissue engineering vascular scaffolds based on biodegradable aliphatic–aromatic copolyesters. Curr Appl Phys 2005; 5: 557–560.
- 43 Wang LC, Chen JW, Liu H, Chen ZQ, Zhang Y, Wang CY, Feng ZG. Synthesis and evaluation of biodegradable segmented multiblock poly(ether ester) copolymers for biomaterial applications. Polym Int 2004; 53: 2145–2154.
- 44 Farè S, Valtulina V, Petrini P, Alessandrini E, Pietrocola G, Tanzi MC, Speziale P, Visai L. In vitro interaction of human fibroblasts and platelets with a shape-memory polyurethane. J Biomed Mater Res A 2005; 73: 1–11.
- 45 Alves P, Cardoso R, Correia TR, Antunes BP, Correia IJ, Ferreira P. Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves. Colloids Surf B: Biointerfaces 2014; 113: 25–32.
- 46 Nojima K, Sanui K, Ogata N, Yui N, Kataoka K, Sakurai Y. Material characterization of segmented polyether poly(urethane-urea-amide)s and its implication in blood compatibility. Polymer 1987; 28: 1017–1024.
- 47 Takahara A, Okkema AZ, Wabers H, Cooper SL. Effect of hydrophilic soft segment side chains on the surface properties and blood compatibility of segmented poly(urethaneureas). J Biomed Mater Res 1991; 25: 1095–118.
- 48 Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol 2008; 20: 86–100.
- 49 Jones JA, Chang DT, Meyerson H, Colton E, Kwon IK, Matsuda T, Anderson JM. Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res A 2007; 83: 585–596.
- 50 Dinarello CA. Induction of interleukin-1 and interleukin-1 receptor antagonist. Semin Oncol 1997; 24: S9-81–S9-93.
- 51 Tsuchiya S, Yamabe M, Yamaguchi Y, Kobayashi Y, Konno T, Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 1980; 26: 171–176.
- 52 Tsuchiya S, Kobayashi Y, Goto Y, Okumura H, Nakae S, Konno T, Tada K. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res 1982; 42: 1530–1536.
- 53 Auwerx J. The human leukemia cell line, THP-1: A multifacetted model for the study of monocyte-macrophage differentiation. Experientia 1991; 47: 22–31.
- 54 Ma N, Petit A, Huk OL, Yahia LH, Tabrizian M. Safety issue of re-sterilization of polyurethane electrophysiology catheters: A cytotoxicity study. J Biomater Sci Polym Ed 2003; 14: 213–226.
- 55 Li J, Zhang K, Yang P, Qin W, Li G, Zhao A, Huang N. Human vascular endothelial cell morphology and functional cytokine secretion influenced by different size of HA micro-pattern on titanium substrate. Colloids Surf B: Biointerfaces 2013; 110: 199–207.
- 56 Mindroiu M, Ion R, Pirvu C, Cimpean A. Surfactant-dependent macrophage response to polypyrrole-based coatings electrodeposited on Ti6Al7Nb alloy. Mater Sci Eng C 2013; 33: 3353–3361.
- 57 Frankova J, Pivodova V, Ruzicka F, Tomankova K, Safarova K, Vrbkova J, Ulrichova J. Comparing biocompatibility of gingival fibroblasts and bacterial strains on a different modified titanium discs. J Biomed Mater Res A 2013; 101: 2915–2924.
- 58 Harrick NJ. Study of physics and chemistry of surfaces from frustrated total internal reflections. Phys Rev Lett 1960; 4: 224–226.