Surface bound VEGF mimicking peptide maintains endothelial cell proliferation in the absence of soluble VEGF in vitro
Corresponding Author
Guillaume Le Saux
University of Bordeaux, CBMN, UMR 5248, Pessac, F-33600 France
Correspondence to: G. Le Saux; e-mail: [email protected] or M.-C. Durrieu; e-mail: [email protected]Search for more papers by this authorLaurent Plawinski
University of Bordeaux, CBMN, UMR 5248, Pessac, F-33600 France
Search for more papers by this authorCamila Parrot
Equipe Labellisée Contre Le Cancer, F-33607 Pessac, France
INSERM, U869, ARNA Laboratory, Equipe Labellisée Contre Le Cancer, Bordeaux, F-33076 France
Search for more papers by this authorSylvain Nlate
University of Bordeaux, CBMN, UMR 5248, Pessac, F-33600 France
Search for more papers by this authorLaurent Servant
University of Bordeaux, ISM, UMR 5255, Talence, F-33400 France
Search for more papers by this authorMartin Teichmann
Equipe Labellisée Contre Le Cancer, F-33607 Pessac, France
INSERM, U869, ARNA Laboratory, Equipe Labellisée Contre Le Cancer, Bordeaux, F-33076 France
Search for more papers by this authorThierry Buffeteau
University of Bordeaux, ISM, UMR 5255, Talence, F-33400 France
Search for more papers by this authorMarie-Christine Durrieu
University of Bordeaux, CBMN, UMR 5248, Pessac, F-33600 France
Search for more papers by this authorCorresponding Author
Guillaume Le Saux
University of Bordeaux, CBMN, UMR 5248, Pessac, F-33600 France
Correspondence to: G. Le Saux; e-mail: [email protected] or M.-C. Durrieu; e-mail: [email protected]Search for more papers by this authorLaurent Plawinski
University of Bordeaux, CBMN, UMR 5248, Pessac, F-33600 France
Search for more papers by this authorCamila Parrot
Equipe Labellisée Contre Le Cancer, F-33607 Pessac, France
INSERM, U869, ARNA Laboratory, Equipe Labellisée Contre Le Cancer, Bordeaux, F-33076 France
Search for more papers by this authorSylvain Nlate
University of Bordeaux, CBMN, UMR 5248, Pessac, F-33600 France
Search for more papers by this authorLaurent Servant
University of Bordeaux, ISM, UMR 5255, Talence, F-33400 France
Search for more papers by this authorMartin Teichmann
Equipe Labellisée Contre Le Cancer, F-33607 Pessac, France
INSERM, U869, ARNA Laboratory, Equipe Labellisée Contre Le Cancer, Bordeaux, F-33076 France
Search for more papers by this authorThierry Buffeteau
University of Bordeaux, ISM, UMR 5255, Talence, F-33400 France
Search for more papers by this authorMarie-Christine Durrieu
University of Bordeaux, CBMN, UMR 5248, Pessac, F-33600 France
Search for more papers by this authorAbstract
Continuous glucose monitoring is an efficient method for the management of diabetes and in limiting the complications induced by large fluctuations in glucose levels. For this, intravascular systems may assist in producing more reliable and accurate devices. However, neovascularization is a key factor to be addressed in improving their biocompatibility. In this scope, the perennial modification of the surface of an implant with the proangiogenic Vascular Endothelial Growth Factor mimic peptide (SVVYGLR peptide sequence) holds great promise. Herein, we report on the preparation of gold substrates presenting the covalently grafted SVVYGLR peptide sequence and their effect on HUVEC behavior. Effective coupling was demonstrated using XPS and PM-IRRAS. The produced surfaces were shown to be beneficial for HUVEC adhesion. Importantly, surface bound SVVYGLR is able to maintain HUVEC proliferation even in the absence of soluble VEGF. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1425–1436, 2016.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
jbma35677-sup-0001-suppinfo.docx2.3 MB |
Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Onuki Y, Bhardwaj U, Papadimitrakopoulos F, Burgess DJ. A review of the biocompatibility of implantable devices: Current challenges to overcome foreign body response. J Diabetes Sci Technol 2008; 2: 1003–1015.
- 2 Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 2011; 63: 300–311.
- 3 Ward WK, Quinn MJ, Wood MD, Tiekotter KL, Pidikiti S, Gallagher JA. Vascularizing the tissue surrounding a model biosensor: How localized is the effect of a subcutaneous infusion of vascular endothelial growth factor (VEGF)? Biosens Bioelectron 2003; 19: 155–163.
- 4 World Health Statistics 2012. Geneva, Switzerland: World Health Organization; 2012.
- 5 Wilson GS, Hu Y. Enzyme-based biosensors for in vivo measurements. Chem Rev 2000; 100: 2693–2704.
- 6 Heller A. Implanted electrochemical glucose sensors for the management of diabetes. Ann Rev Biomed Eng 1999; 1: 153–175.
- 7 Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol 2008; 20: 86–100.
- 8 de Mel A, Jell G, Stevens MM, Seifalian AM. Biofunctionalization of biomaterials for accelerated in situ endothelialization: A review. Biomacromolecules 2008; 9: 2969–2979.
- 9 Nichols SP, Koh A, Storm WL, Shin JH, Schoenfisch MH. Biocompatible materials for continuous glucose monitoring devices. Chem Rev 2013; 113: 2528–2549.
- 10 Ratner BD. Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. J Controlled Release 2002; 78: 211–218.
- 11 Urban P, De Benedetti E. Thrombosis: The last frontier of coronary stenting? Lancet 2007; 369: 619–621.
- 12 Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature 2005; 23: 47–55.
- 13 Williams SK, Kleinert LB, Patula-Steinbrenner V. Accelerated neovascularization and endothelialization of vascular grafts promoted by covalently bound laminin type 1. J Biomed Mater Res Part A 2011; 99: 67–73.
- 14 Langer R, Tirrell DA. Designing materials for biology and medicine. Nature 2004; 428: 487–492.
- 15Gold - Applications and Developments in the Electronics, Biomaterials and Catalysis. Materials World 2003;11:12–14. Available at: http://www.azom.com/article.aspx? ArticleID=1899.
- 16 Tirrell M, Kokkoli E, Biesalski M. The role of surface science in bioengineered materials. Surf Sci 2002; 500: 61–83.
- 17 Mrksich M, Whitesides GM. Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu Rev Biophys Biomol Struct 1996; 25: 55–78.
- 18 Mrksich M. A surface chemistry approach to studying cell adhesion. Chem Soc Rev 2000; 29: 267–73.
- 19 Kakinoki S, Yui N, Yamaoka T. Platelet responses to dynamic biomaterial surfaces with different poly(ethylene glycol) and polyrotaxane molecular architectures constructed on gold substrates. J Biomater Appl 2013; 28: 544–51.
- 20 Blindt R, Vogt F, Astafieva I, Fach C, Hristov M, Krott N, Seitz B, Kapurniotu A, Kwok C, Dewor M, Bosserhoff AK, Bernhagen J, Hanrath P, Hoffmann R, Weber C. A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. J Am Coll Cardiol 2006; 47: 1786–1795.
- 21 Gauvreau V, Laroche G. Micropattern printing of adhesion, spreading, and migration peptides on poly(tetrafluoroethylene) films to promote endothelialization. Bioconjugate Chem 2005; 16: 1088–1097.
- 22 Jiang X-S, Chai C, Zhang Y, Zhuo R-X, Mao H-Q, Leong KW. Surface-immobilization of adhesion peptides on substrate for ex vivo expansion of cryopreserved umbilical cord blood CD34+ cells. Biomaterials 2006; 27: 2723–2732.
- 23 McMillan R, Meeks B, Bensebaa F, Deslandes Y, Sheardown H. Cell adhesion peptide modification of gold-coated polyurethanes for vascular endothelial cell adhesion. J Biomed Mater Res 2001; 54: 272–283.
- 24 Veiseh M, Veiseh O, Martin MC, Asphahani F, Zhang M. Short peptides enhance single cell adhesion and viability on microarrays. Langmuir 2007; 23: 4472–4479.
- 25 Lin X, Takahashi K, Liu Y, Zamora PO. Enhancement of cell attachment and tissue integration by a IKVAV containing multi-domain peptide. Biochim Biophys Acta 2006; 1760: 1403–1410.
- 26 Green PM, Ludbrook SB, Miller DD, Horgan CMT, Barry ST. Structural elements of the osteopontin SVVYGLR motif important for the interaction with α4 integrins. FEBS Lett 2001; 503: 75–79.
- 27 Yokosaki Y, Matsuura N, Sasaki T, Murakami I, Schneider H, Higashiyama S, Saitoh Y, Yamakido M, Taooka Y, Sheppard D. The integrin α9β1 binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin. J Biol Chem 1999; 274: 36328–36334.
- 28 Hamada Y, Nokihara K, Okazaki M, Fujitani W, Matsumoto T, Matsuo M, Umakoshi Y, Takahashi J, Matsuura N. Angiogenic activity of osteopontin-derived peptide SVVYGLR. Biochem Biophys Res Commun 2003; 310: 153–157.
- 29 Lei Y, Rémy M, Labrugère C, Durrieu M-C. Peptide immobilization on polyethylene terephthalate surfaces to study specific endothelial cell adhesion, spreading and migration. J Mater Sci Mater Med 2012; 23: 2761–2772.
- 30 Hamada Y, Egusa H, Kaneda Y, Hirata I, Kawaguchi N, Hirao T, Matsumoto T, Yao M, Daito K, Suzuki M, Yatani H, Daito M, Okazaki M, Matsuura N. Synthetic osteopontin-derived peptide SVVYGLR can induce neovascularization in artificial bone marrow scaffold biomaterials. Dent Mater J 2007; 26: 487–492.
- 31 31. Lei Y, Zouani OF, Rémy M, Ayela C, Durrieu M-C. Geometrical microfeature cues for directing tubulogenesis of endothelial cells. PLoS One 2012; 7: e41163.
- 32 Zouani OF, Lei Y, Durrieu M-C. Pericytes, stem-cell-like cells, but not mesenchymal stem cells are recruited to support microvascular tube stabilization. Small 2013; 9: 3070–3075.
- 33Graham D, Dingman S. A Step-by-Step Guide for Solution Based Self-Assembly. Material Matters 2006; 1.2:18. Available at: http://www.sigmaaldrich.com/technical-documents/articles/material-matters/a-step-by-step-guide0.html.
- 34 Buffeteau T, Desbat B, Turlet JM. Polarization modulation FT-IR spectroscopy of surfaces and ultra-thin films: Experimental procedure and quantitative analysis. Appl Spectrosc 1991; 45: 380–389.
- 35 Buffeteau T, Desbat B, Blaudez D, Turlet JM. Calibration procedure to derive IRRAS spectra from PM-IRRAS spectra. Appl Spectrosc 2000; 54: 1646–1650.
- 36 Ramin MA, Le Bourdon G, Daugey N, Bennetau B, Vellutini L, Buffeteau T. PM-IRRAS investigation of self-assembled monolayers grafted onto SiO2/Au substrates. Langmuir 2011; 27: 6076–6084.
- 37 Yang YW, Fan LJ. High-resolution XPS study of decanethiol on Au(111): Sulfur-gold bonding interaction. Langmuir 2002; 18: 1157–1164.
- 38
Buffeteau T,
Desbat B,
Turlet J-M. FT-IR spectroscopy of monolayers and ultrathin films using polarization modulation. Microchim Acta 1988; 95: 23–26.
10.1007/BF01349714 Google Scholar
- 39 Takahashi Y, Tadokoro H. Structural studies of polyethers, (-(CH2)m-O-)n. X. Crystal structure of poly(ethylene oxide). Macromolecules 1973; 6: 672–675.
- 40 Siesler HW, Holland-Moritz K. Infrared and Raman Spectroscopy of Polymers. New York: Marcel Dekker; 1980.
- 41 Ramin MA, Le Bourdon G, Heuzé K, Degueil M, Belin C, Buffeteau T, Bennetau B, Vellutini L. Functionalized hydrogen-bonding self-assembled monolayers grafted onto SiO2 substrates. Langmuir 2012; 28: 17672–17680.
- 42 Murphy DA, Makonnen S, Lassoued W, Feldman MD, Carter C, Lee WMF. Inhibition of tumor endothelial ERK activation, angiogenesis, and tumor growth by sorafenib (BAY43-9006). Am J Pathol 2006; 169: 1875–1885.
- 43 Roskoski R, Jr. ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res 2012; 66: 105–143.
- 44 Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J 2007; 92: 2964–2974.
- 45 Le Saux G, Magenau A, Gunaratnam K, Kilian KA, Böcking T, Gooding JJ, Gaus K. Spacing of integrin ligands influences signal transduction in endothelial cells. Biophys J 2011; 101: 764–773.
- 46 Massia SP, Hubbell JA. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell Biol 1991; 114: 1089–1100.
- 47 Chollet C, Chanseau C, Remy M, Guignandon A, Bareille R, Labrugère C, Bordenave L, Durrieu M-C. The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces. Biomaterials 2009; 30: 711–720.
- 48 Porté-Durrieu M-C, Guillemot F, Pallu S, Labrugère C, Brouillaud B, Bareille R, Amédée J, Barthe N, Dard M, Baquey C. Cyclo-(DfKRG) peptide grafting onto Ti6-Al-4V: physical characterization and interest towards human osteoprogenitor cells adhesion. Biomaterials 2004; 25: 4837–4846.
- 49 Raigoza AF, Webb LJ. Molecularly resolved images of peptide-functionalized gold surfaces by scanning tunneling microscopy. J Am Chem Soc 2012; 134: 19354–19357.
- 50 Dalsin JL, Messersmith PB. Bioinspired antifouling polymers. Mater Today 2005; 8: 38–46.
- 51 Fan X, Lin L, Messersmith PB. Cell fouling resistance of polymer brushes grafted from Ti substrates by surface-initiated polymerization: Effect of ethylene glycol side chain length. Biomacromolecules 2006; 7: 2443–2448.
- 52 Arima Y, Iwata H. Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 2007; 28: 3074–3082.
- 53 Park KM, Lee Y, Son JY, Bae JW, Park KD. In situ SVVYGLR peptide conjugation into injectable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for enhancement of endothelial cell activity and neo-vascularization. Bioconjugate Chem 2012; 23: 2042–2050.
- 54 Hynes RO. Integrins: Bidirectional, allosteric signaling machines. Cell 2002; 110: 673–687.
- 55 Barry ST, Ludbrook SB, Murrison E, Horgan CMT. Analysis of the α4β1 Integrin-osteopontin interaction. Exp Cell Res 2000; 258: 342–351.
- 56 Egusa H, Kaneda Y, Akashi Y, Hamada Y, Matsumoto T, Saeki M, Thakor DK, Tabata Y, Matsuura N, Yatani H. Enhanced bone regeneration via multimodal actions of synthetic peptide SVVYGLR on osteoprogenitors and osteoclasts. Biomaterials 2009; 30: 4676–4686.
- 57 Yokosaki Y, Tanaka K, Higashikawa F, Yamashita K, Eboshida A. Distinct structural requirements for binding of the integrins αvβ6, αvβ3, αvβ5, α5β1 and α9β1 to osteopontin. Matrix Biol 2005; 24: 418–427.
- 58 Traub S, Morgner J, Martino MM, Häning S, Swartz MA, Wickström SA, Hubbell JA, Eming SA. The promotion of endothelial cell attachment and spreading using FNIII10 fused to VEGF-A165. Biomaterials 2013; 34: 5958–5968.
- 59 Mahabeleshwar GH, Feng W, Reddy K, Plow EF, Byzova TV. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res 2007; 101: 570–580.
- 60 Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A, Shattil SJ, Plow EF. A mechanism for modulation of cellular responses to VEGF: Activation of the integrins. Mol Cell 2000; 6: 851–860.
- 61 Masson-Gadais B, Houle F, Laferrière J, Huot J. Integrin αvβ3 requirement for VEGFR2-mediated activation of SAPK2/p38 and for Hsp90-dependent phosphorylation of focal adhesion kinase in endothelial cells activated by VEGF. Cell Stress Chaperones 2003; 8: 37–52.
- 62 Eliceiri BP. Integrin and growth factor receptor crosstalk. Circ Res 2001; 89: 1104–1110.
- 63 Somanath P, Malinin N, Byzova T. Cooperation between integrin αVβ3 and VEGFR2 in angiogenesis. Angiogenesis 2009; 12: 177–185.
- 64 Reynolds LE, Wyder L, Lively JC, Taverna D, Robinson SD, Huang X, Sheppard D, Hynes RO, Hodivala-Dilke KM. Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins. Nat Med 2002; 8: 27–34.
- 65 Calzada MJ, Zhou L, Sipes JM, Zhang J, Krutzsch HC, Iruela-Arispe ML, et al. α4β1 integrin mediates selective endothelial cell responses to thrombospondins 1 and 2 in vitro and modulates angiogenesis in vivo. Circ Res 2004; 94: 462–470.
- 66 Scatena M, Almeida M, Chaisson ML, Fausto N, Nicosia RF, Giachelli CM. NF-κB mediates αvβ3 integrin-induced endothelial cell survival. J Cell Biol 1998; 141: 1083–1093.
- 67 Dai J, Peng L, Fan K, Wang H, Wei R, Ji G, Cai J, Lu B, Li B, Zhang D, Kang Y, Tan M, Qian W, Guo Y. Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene 2009; 28: 3412–3422.