Heparin dopant increases the electrical stability, cell adhesion, and growth of conducting polypyrrole/poly(L,L-lactide) composites
Shiyun Meng
Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche de l'Hôpital Saint-François d'Assise, CHUQ, Québec, Québec, Canada
Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
Search for more papers by this authorMahmoud Rouabhia
Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
Search for more papers by this authorGuixin Shi
Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche de l'Hôpital Saint-François d'Assise, CHUQ, Québec, Québec, Canada
Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
Search for more papers by this authorCorresponding Author
Ze Zhang
Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche de l'Hôpital Saint-François d'Assise, CHUQ, Québec, Québec, Canada
Hôpital Saint-François d'Assise, 10 Rue de l'Espinay, Local E0-165, Québec, QC, G1L 3L5 CanadaSearch for more papers by this authorShiyun Meng
Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche de l'Hôpital Saint-François d'Assise, CHUQ, Québec, Québec, Canada
Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
Search for more papers by this authorMahmoud Rouabhia
Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
Search for more papers by this authorGuixin Shi
Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche de l'Hôpital Saint-François d'Assise, CHUQ, Québec, Québec, Canada
Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Québec, Canada
Search for more papers by this authorCorresponding Author
Ze Zhang
Département de Chirurgie, Faculté de Médecine, Université Laval, Centre de Recherche de l'Hôpital Saint-François d'Assise, CHUQ, Québec, Québec, Canada
Hôpital Saint-François d'Assise, 10 Rue de l'Espinay, Local E0-165, Québec, QC, G1L 3L5 CanadaSearch for more papers by this authorAbstract
Polypyrrole (PPy) is a promising conductive polymer for tissue engineering and bioelectrical applications. However, its electrical conductivity deteriorates easily in aqueous conditions. Cell adhesion to PPy is also relatively poor. The goal of this study was to simultaneously improve the electrical stability of and cell adhesion to PPy by using heparin (HE) as dopant, for HE is both a polyanion and an important glycosaminoglycan in cell membranes and extracellular matrix. PPy particles doped with HE were synthesized through emulsion polymerization using Fenton's reagent as an oxidant. X-ray photoelectron spectroscopy (XPS), infrared and scanning electron microscopy (SEM) were used to investigate the PPy particles. Conductive biodegradable membranes of 102 to 103 Ω/square were prepared from 5% (w) PPy with various amounts of HE and 95% (w) poly(L,L-lactide) (PPy/PLLA). Azure A staining was employed to quantify the HE exposed on the surface of the PPy particles and PPy/PLLA membranes. The distribution of HE on membranes was demonstrated by DAPI staining. Results showed that HE was incorporated into the PPy particles as counterions and presented on particle surface. A unique “filament”-like morphology of the PPy preparation was observed at high-HE content. The electrical stability of the PPy/PLLA membranes was tested in saline at 37°C for 500 h. Human skin fibroblasts were used to test the cell adhesion capacity. The conductive membranes containing HE-doped PPy particles recorded significantly increased electrical stability, cell adhesion, and growth. The electrically more stable and cell adhesive conductive biodegradable membrane may act as a platform for various biomedical applications. © 2008 Wiley Periodicals, Inc. J Biomed Mater Res 2008
References
- 1 Kalinin SV,Rodriguez BJ,Shin J,Jesse S,Grichko V,Thundat T,Baddorf AP,Gruverman A. Bioelectromechanical imaging by scanning probe microscopy: Galvani's experiment at the nanoscale. Ultramicroscopy 2006; 106: 334–340.
- 2 McCaig CD,Zhao M. Physiological electrical fields modify cell behaviour. BioEssays 1997; 19: 819–826.
- 3 Lavine LS,Grodzinsky AJ. Electrical stimulation of repair of bone. J Bone Joint Surg Am 1987; 69: 626–630.
- 4 Karba R,Semrov D,Vodovnik L,Benko H,Savrin R. DC electrical stimulation for chronic wound healing enhancement, Part 1. Clinical study and determination of electrical field distribution in the numerical wound model. Bioelectrochem Bioenerget 1997; 43: 265–270.
- 5 Song B,Zhao M,Forrester J,McCaig CD. Nerve regeneration and wound healing are stimulated and directed by an endogenous electrical field in vivo. J Cell Sci 2004; 117: 4681–4690.
- 6 Kerns JM,Fakhouri AJ,Weinrib HP,Freeman JA. Electrical stimulation of nerve regeneration in the rat: The early effects evaluated by a vibrating probe and electron microscopy. Neuroscience 1991; 40: 93–107.
- 7 Pu J,Zhao M. Orientation and directed migration of cultured corneal epithelial cells in small electric fields are serum dependent. J Cell Sci 2005; 118: 1117–1128.
- 8 Wang E,Yin Y,Zhao M,Forrester J,McCaig CD. Physiological electric fields control the G1/S phase cell cycle checkpoint to inhibit endothelial cell proliferation. FASEB J 2003; 17: 458–460.
- 9 Zhao M,Forrester JV,McCaig CD. A small physiological electric field orients cell division. PNAS 1999; 96: 4942–4946.
- 10 Ateh DD,Navsaria HA,Vadgama P. Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interf 2006; 22: 741–752.
- 11 Velasco F. Neuromodulation: An overview. Arch Med Res 2000; 31: 232–236.
- 12 Grandjean P,Acker M,Madoff R,Williams NS,Woloszko J,Kantor C. Dynamic myoplasty: Surgical transfer and stimulation of skeletal muscle for functional substitution or enhancement. J Rehabil Res Dev 1996; 33: 133–144.
- 13 Kotwal A,Schmidt CE. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 2001; 22: 1055–1064.
- 14 Wang X,Gu X,Yuan C,Chen S,Zhang P,Zhang T,Yao J,Chen F,Chen G. Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J Biomed Mater Res A 2004; 68: 411–422.
- 15 Zhang Z,Roy R,Dugre FJ,Tessier D,Dao LH. In vitro biocompatibility study of electrically conductive polypyrrole-coated polyester fabrics. J Biomed Mater Res 2001; 57: 63–71.
- 16 Wang Z,Roberge C,Dao LH,Wan Y,Shi G,Rouabhia M,Guidoin R,Zhang Z. In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated poly(D,L-lactide-co-glycolide) membranes. J Biomed Mater Res A 2004; 70: 28–38.
- 17 Wong JY,Langer R,Ingber DE. Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proc Natl Acad Sci USA 1994; 91: 3201–3204.
- 18 Shi G,Rouabhia M,Wang Z,Dao LH,Zhang Z. A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials 2004; 25: 2477–2488.
- 19 Jiang X,Marois Y,Traore A,Tessier D,Dao LH,Guidoin R,Zhang Z. Tissue reaction to polypyrrole-coated polyester fabrics: An in vivo study in rats. Tissue Eng 2002; 8: 635–647.
- 20 Wang Z,Roberge C,Dao Lê H,Wan Y,Shi G,Rouabhia M,Guidoin R,Zhang Z. In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated poly(D,L-lactide-co-glycolide) membranes. J Biomed Mater Res A 2004; 70: 28–38.
- 21 Ze Z,Rouabhia M,Wang Z,Roberge C,Shi G,Roche P,Li J,Lô HD. Electrically conductive biodegradable polymer composite for nerve regeneration: Electricity-stimulated neurite outgrowth and axon regeneration. Artif Organs 2007; 31: 13–22.
- 22 Li Y,Neoh KG,Cen L,Kang ET. Porous and electrically conductive polypyrrole-poly(vinyl alcohol) composite and its applications as a biomaterial. Langmuir 2005; 21: 10702–10709.
- 23 Jiang XP,Tessier D,Dao LH,Zhang Z. Biostability of electrically conductive polyester fabrics: An in vitro study. J Biomed Mater Res 2002; 62: 507–513.
- 24 Kaufman JH,Colaneri N,Scott JC,Street GB. Evolution of polaron states into bipolarons in polypyrrole. Phys Rev Lett 1984; 53: 1005–1008.
- 25 Bredas JL,Scott JC,Yakushi K,Street GB. Polarons and bipolarons in polypyrrole: Evolution of the band structure and optical spectrum upon doping. Phys Rev B 1984; 30: 1023–1025.
- 26 Sun L,Yang S,Liu J. Conducting polymer with improved long-time stability: Polyaniline-polyelectrolyte complex. Mater Res Soc Sym Proc 1994; 328: 167–172.
- 27 Sun L,Liu H,Clark R,Yang S. Double-strand polyaniline. Synth Met 1997; 84: 67–68.
- 28 Baker CK,Qiu YJ,Reynolds JR. Electrochemically induced mass transport in poly(pyrrole)/poly(styrene sulfonate) molecular composites. J Phys Chem 1991; 95: 4446–4452.
- 29 Naoi K,Lien M,Smyrl WH. Quartz crystal microbalance study: Ionic motion across conducting polymers. J Electrochem Soc 1991; 138: 440–445.
- 30 Ren X,Pickup PG. Ion transport in polypyrrole and a polypyrrole/polyanion composite. J Phys Chem 1993; 97: 5356–5362.
- 31 Hodgson AJ,Gilmore KJ,Small C,Wallace GG,I. MacKenzie,N. Ogata,T. Aoki. Reactive supramolecular assemblies of mucopolysaccharide polypyrrole and protein as controllable biocomposites for a new generation of intelligent biomaterials. Supramol Sci 1994; 1: 77–83.
- 32 Price WE,Wallace GG,Zhao H. Effect of the counterion on transport across polypyrrole membranes. J Membr Sci 1994; 87: 47–56.
- 33 Price WE,Wallace GG,Zhao H. Transport across stand alone conducting polypyrrole membranes containing dodecyl sulfate. React Polym 1994; 23: 213–220.
- 34 Pyo M,Reynolds JR,Leslie F,Henry O,Marcy W. Long-term redox switching stability of polypyrrole. Synth Met 1994; 68: 71–77.
- 35
Garner B,Georgevich A,Hodgson AJ,Liu L,Wallace GG.
Polypyrrole-heparin composites as stimulus-responsive substrates for endothelial cell growth.
J Biomed Mater Res
1999;
44:
121–129.
10.1002/(SICI)1097-4636(199902)44:2<121::AID-JBM1>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 36 Huijs FM,Vercauteren FF,De Ruiter B,Kalicharan D,Hadziioannou G. Shell morphology of core-shell latexes based on conductive polymers. Synth Met 1999; 102: 1151–1152.
- 37 Huijs FM,Lang J. Morphology and film formation of poly (butyl methacrylate)-polypyrrole core-shell latex particles. Colloid Polym Sci 2000; 278: 746–756.
- 38 Smith FM. Measurement of sheet resistivities with the four-point robe. AT&T Tech J 1958; 37: 711–718.
- 39 Widmer MS,Gupta PK,Lu L,Meszlenyi RK,Evans GR,Brandt K,Savel T,Gurlek A,Patrick CWJr,Mikos AG. Manufacture of porous biodegradable polymer conduit by an extrusion process for guided tissue engineering. Biomaterials 1998; 19: 1945–1955.
- 40 Klein MD,Drongowski RA,Linhardt RJ,Langer RS. A colorimetric assay for chemical heparin in plasma. Anal Biochem 1982; 124: 59–64.
- 41 Gundry SR,Klein MD,Drongowski RA,Kirsh MM. Clinical evaluation of a new rapid heparin assay using the dye azure A. Am J Surg 1984; 148: 191–194.
- 42 Grossgebauer K. A new fluorescence technique for staining of mononuclear phagocytes. Ann Hematol 1979; 39: 281–283.
- 43 Grossgebauer K. Staining of acid mucopolysaccharides appearing on and in various cell types by DAPI. Microsc Acta 1979; 82: 291–293.
- 44 Grossgebauer K. Fluorescent staining of nuclear envelope coated with heparin. Microsc Acta 1980; 83: 49–54.
- 45 Li Y,Neoh KG,Cen L,Kang ET. Physicochemical and blood compatibility characterization of polypyrrole surface functionalized with heparin. Biotechnol Bioeng 2003; 84: 305–313.
- 46 Wang Z,Roberge C,Wan Y,Dao LH,Guidoin R,Zhang Z. A biodegradable electrical bioconductor made of polypyrrole nanoparticle/poly(D,L-lactide) composite: A preliminary in vitro biostability study. J Biomed Mater Res A 2003; 66: 738–746.
- 47 Kang ET,Neoh KG,Ong YK,Tan KL,Tan BTG. X-ray photoelectron spectroscopic studies of polypyrrole synthesized with oxidative iron (III) salts. Macromolecules 1991; 24: 2822–2828.
- 48 Schoch KF,Byers WAJr,Buckley LJ. Deposition and characterization of conducting polymer thin films on insulating substrates. Synth Met 1995; 72: 13–23.
- 49 Neoh KG,Lau KKS,Wong VVT,Kang ET,Tan KL. Structure and degradation behavior of polypyrrole doped with sulfonate anions of different sizes subjected to undoping-redoping cycles. Chem Mater 1996; 8: 167–172.
- 50 Sak-Bosnar M,Budimir MV,Kovac S,Kukulj D,Duic L. Chemical and electrochemical characterization of chemically synthesized conducting polypyrrole. J Polym Sci: Polym Chem 1992; 30: 1609–1614.
- 51 Agarwalt PK,Dutta PK,Lundberg RD. Infra-red investigation of sulphonated EPDM polymers. Polymer 1987; 28: 1467–1471.
- 52 Xiao CF,Tao XM,Sarah MYL,Keith WYK. Structural characteristics of chemical vapor polymerized polypyrrole/polycaprolactam fiber composites. Polym Int 2001; 55: 101–107.
- 53 Li Y,Qian R. Stability of conducting polymers from the electrochemical point of view. Synth Met 1993; 53: 149–154.
- 54 Lu W,Fadeev AG,Qi B,Smela E,Mattes BR,Ding J,Spinks GM,Mazurkiewicz J,Zhou D,Wallace GG,MacFarlane DR,Forsyth SA,Forsyth M. Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 2002; 297: 983–987.
- 55 Guo N,Krutzsch HC,Negre E,Vogel T,Blake DA,Roberts DD. Heparin- and sulfatide-binding peptides from the type I repeats of human thrombospondin promote melanoma cell adhesion. PNAS 1992; 189: 3040–3044.
- 56 Mahalingam Y,Gallagher JT,Couchman JR. Cellular adhesion responses to the heparin-binding (HepII) domain of fibronectin require heparan sulfate with specific properties. J Biol Chem 2007; 282: 3221–3320.
- 57 Reynolds LR,Pyo M,Qiu YJ. Cation and anion dominated ion transport during electrochemical switching of polypyrrole controlled by polymer-ion interactions. Synth Met 1993; 55–57: 1388–1395.
- 58 Pruneanu S,Graupner W,Oniciu L,Brie M,Turcu R. Electrochemical and X-ray diffraction studies on polypyrrole films. Mater Chem Phys 1996; 46: 55–60.
- 59 Mitchell GR,Davis FJ,Legge CH. The effect of dopant molecules on the molecular order of electrically-conducting films of polypyrrole. Synth Met 1988; 26: 247–257.
- 60 Mitchell GR,Davis FJ,Legge CH. The effect of dopant molecules on the molecular order of electrically-conducting films of polypyrrole. Synth Met 1988; 26: 247–257.
- 61 Kuwabata S,Okamoto K,Ikeda O,Yoneyama H. Effect of organic dopants on electrical conductivity of polypyrrole films. Synth Met 1987; 18: 101–104.
- 62 Shi W,Ge D,Wang J,Jiang Z,Ren L,Zhang Q. Heparin-controlled growth of polypyrrole nanowires. Macromol Rapid Commun 2006; 12: 926–930.