Robust flocking of multiple intelligent agents with multiple disturbances
Yize Yang
School of Automation, Southeast University, Nanjing, China
Search for more papers by this authorCorresponding Author
Yang-Yang Chen
School of Automation, Southeast University, Nanjing, China
Correspondence Yang-Yang Chen, School of Automation, Southeast University, 210096 Nanjing, China.
Email: [email protected]
Search for more papers by this authorHongyong Yang
School of Information and Electrical Engineering, Ludong University, Yantai, China
Search for more papers by this authorYize Yang
School of Automation, Southeast University, Nanjing, China
Search for more papers by this authorCorresponding Author
Yang-Yang Chen
School of Automation, Southeast University, Nanjing, China
Correspondence Yang-Yang Chen, School of Automation, Southeast University, 210096 Nanjing, China.
Email: [email protected]
Search for more papers by this authorHongyong Yang
School of Information and Electrical Engineering, Ludong University, Yantai, China
Search for more papers by this authorAbstract
The cooperation control of multiple intelligent agents (MIAs), which can solve complex engineering problems in practice, has received increasing attention. However, there are multiple disturbances in wireless sensor networks, which has a great effect on the collaboration of MIAs. In this paper, the problem of the flocking motion of second-order MIAs is addressed with collision avoidance and multiple disturbances. To estimate the matched/mismatched disturbances, the disturbance observers are designed. It is noted that the assumption that the differentials of disturbances converge to zeros in the literature is removed. A novel compound strategy is designed by using the robust auxiliary function and the potential function. The asymptotic properties of the flocking system are studied based on the Input-to-State Stability Theorem and the robust stability. Numerical simulation results verify the validity of the proposed protocol.
CONFLICTS OF INTEREST
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
The data used to support the findings of this study are available from the corresponding author upon request.
REFERENCES
- 1Wang Q, Chen Z, Liu P, Hua Q. Distributed multi-robot formation control in switching networks. Neurocomputing. 2017; 270: 4-10. doi:10.1016/j.neucom.2016.12.104
- 2Wu Z, Liao H. A consensus reaching process for large-scale group decision making with heterogeneous preference information. Int J Intell Syst. 2021: 36(9): 4560-4591. doi:10.1002/int.22469
- 3Mandal P, Samanta S, Pal M. Multiplicative consistency analysis of linguistic preference relation with self-confidence level and self-doubting level and its application in a group decision making. Int J Intell Syst. 2021; 36(10): 5389-5418. doi:10.1002/int.22516
- 4Reynolds C. Flocks, herds and schools: a distributed behavioral model. ACM Siggraph Comput Graphics. 1987; 21: 25-34. doi:10.1145/37402.37406
10.1145/37402.37406 Google Scholar
- 5Olfati-Saber R, Murray R. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control. 2004; 49: 1520-1533. doi:10.1109/tac.2004.834113
- 6Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Control. 2006; 51: 401-420. doi:10.1109/tac.2005.864190
- 7Su H, Wang X, Lin Z. Flocking of multi-agents with a virtual leader. IEEE Trans Autom Control. 2009; 54: 293-307. doi:10.1109/tac.2008.2010897
- 8Su H. Flocking in multi-agent systems with multiple virtual leaders based only on position measurements. Commun Theor Phys. 2012; 57: 801-807. doi:10.1088/0253-6102/57/5/10
- 9Wen G, Duan Z, Su H, Chen G, Yu W. A connectivity-preserving flocking algorithm for multi-agent dynamical systems with bounded potential function. IET Control Theory Appl. 2012; 6: 813. doi:10.1049/iet-cta.2011.0532
- 10Qiu H, Duan H. A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles. Inf Sci. 2019; 509: 515-529. doi:10.1016/j.ins.2018.06.061
- 11Yang Y, Yang H, Liu F, Liu L. Optimal control of distributed multi-agent systems with finite-time group flocking. Int J Intell Syst. 2020; 35: 300-307. doi:10.1002/int.22264
- 12Liu C, Zhu E, Zhang Q, Wei X. Exploring the effects of computational costs in extensive games via modeling and simulation. Int J Intell Syst. 2021; 36: 4065-4087. doi:10.1002/int.22450
- 13Hu L, Yan H, Li L, Pan Z, Liu X, Zhang Z. MHAT: an efficient model-heterogeneous aggregation training scheme for federated learning. Inf Sci. 2021; 560: 493-503. doi:10.1016/j.ins.2021.01.046
- 14Alshehri A, Miller T, Sonenberg L. Modeling communication of collaborative multiagent system under epistemic planning. Int J Intell Syst. 2021; 36(10): 5959-5980. doi:10.1002/int.22536
- 15Yang H, Yang Y, Han F, Zhao M, Guo L. Containment control of heterogeneous fractional-order multi-agent systems. J Franklin Inst. 2019; 356: 752-765. doi:10.1016/j.jfranklin.2017.09.034
- 16Li T, Wang Z, Chen Y, Li C, Jia Y, Yang Y. Is semi-selfish mining available without being detected? Int J Intell Syst. 2021; 36:22656. doi:10.1002/int.22656
10.1002/int.22656 Google Scholar
- 17Chen Y, Sun J, Yang Y, Li T, Niu X, Zhou H. PSSPR: a source location privacy protection scheme based on sector phantom routing in WSNs. Int J Intell Syst. 2021; 36:22666. doi:10.1002/int.22666
- 18Yang H, Zhu X, Zhang S. Consensus of second-order delayed multi-agent systems with leader-following. Eur J Control. 2010; 16: 188-199. doi:10.3166/ejc.16.188-199
- 19Yang H, Zhang Z, Zhang S. Consensus of second-order multi-agent systems with exogenous disturbances. Int J Robust Nonlinear Control. 2010; 21: 945-956. doi:10.1002/rnc.1631
- 20Guo S, Geng S, Xiang T, Liu H, Hou R. ELAA: an efficient local adversarial attack using model interpreters. Int J Intell Syst. 2021: 1-23. doi:10.1002/int.22680
- 21Tian X, Liu H, Liu H. Robust finite-time consensus control for multi-agent systems with disturbances and unknown velocities. ISA Trans. 2018; 80: 73-80. doi:10.1016/j.isatra.2018.07.032
- 22Mo K, Liu X, Huang T, Yan A. Querying little is enough: model inversion attack via latent information. Int J Intell Syst. 2021; 36: 681-690. doi:10.1002/int.22315
- 23Yang H, Zhu X, Cao K. Distributed coordination of fractional order multi-agent systems with communication delays. Fractional Calculus Appl Anal. 2014; 17: 23-37. doi:10.2478/s13540-014-0153-9
- 24Yang H, Guo L, Zou H. Robust consensus of multi-agent systems with time-delays and exogenous disturbances. Int J Control Autom Syst. 2012; 10: 797-805. doi:10.1007/s12555-012-0416-3
- 25Yang J, Zolotas A, Chen W, Michail K, Li S. Robust control of nonlinear MAGLEV suspension system with mismatched uncertainties via DOBC approach. ISA Trans. 2011; 50: 389-396. doi:10.1016/j.isatra.2011.01.006
- 26Yang Y, Yang H, Liu F. Group motion of autonomous vehicles with anti-disturbance protection. J Network Comput Appl. 2020; 162:102661. doi:10.1016/j.jnca.2020.102661
- 27Zhao Q, Dong X, Liang Z, Bai C, Chen J, Ren Z. Distributed cooperative guidance for multiple missiles with fixed and switching communication topologies. Chin J Aeronaut. 2017; 30: 1570-1581. doi:10.1016/j.cja.2017.06.009
- 28Yang J, Li S, Yu X. Sliding-mode control for systems with mismatched uncertainties via a disturbance observer. IEEE Trans Ind Electron. 2013; 60: 160-169. doi:10.1109/tie.2012.2183841
- 29Wang X, Li S, Lam J. Distributed active anti-disturbance output consensus algorithms for higher-order multi-agent systems with mismatched disturbances. Automatica. 2016; 74: 30-37. doi:10.1016/j.automatica.2016.07.010
- 30Chen Y-Y, Ai X, Zhang Y, Liug C-L. Spherical orbit tracking and formation flying for nonholonomic aircraft-like vehicles with directed interactions and unknown disturbances. IEEE Trans Syst Man Cybern: Syst. 2021: 1-6. doi:10.1109/TSMC.2021.3119893
- 31Chen Y-Y, Chen K, Astolfi A. Adaptive formation tracking control for first-order agents in a time-varying flowfielde. IEEE Trans Autom Control. 2021: 1. doi:10.1109/TAC.2021.3074900
- 32Yang Y, Liu F, Yang H, Li Y, Liu Y. Distributed finite-time integral sliding-mode control for multi-agent systems with multiple disturbances based on nonlinear disturbance observers. J Syst Sci Complex. 2021; 34: 995-1013. doi:10.1007/s11424-020-9152-6
- 33Yang H, Wang F, Han F. Containment control of fractional order multi-agent systems with time delays. IEEE/CAA J Autom Sin. 2018; 5: 727-732. doi:10.1109/JAS.2016.7510211
10.1109/JAS.2016.7510211 Google Scholar
- 34Wang F, Ni Y-H, Liu Z-X, Chen Z-Q. Fully distributed containment control for second-order multi-agent systems with communication delay. ISA Trans. 2020; 99: 123-129. doi:10.1016/j.isatra.2019.09.009
- 35Wang F, Ni Y-H, Liu Z-X, Chen Z-Q. Containment control for general second-order multiagent systems with switched dynamics. IEEE Trans Cybern. 2020; 50(2): 550-560. doi:10.1109/TCYB.2018.2869706