Breast lesion classification using features fusion and selection of ensemble ResNet method
Gülhan Kılıçarslan
Department of Radiology, Fethi Sekin City Hospital, Elazig, Turkey
Search for more papers by this authorCanan Koç
Department of Software Engineering, Faculty of Engineering, Firat University, Elazig, Turkey
Search for more papers by this authorCorresponding Author
Fatih Özyurt
Department of Software Engineering, Faculty of Engineering, Firat University, Elazig, Turkey
Correspondence
Fatih Özyurt, Department of Software Engineering, College of Engineering, Firat University, Elazig, Turkey.
Email: [email protected]
Search for more papers by this authorYeliz Gül
Department of Radiology, Fethi Sekin City Hospital, Elazig, Turkey
Search for more papers by this authorGülhan Kılıçarslan
Department of Radiology, Fethi Sekin City Hospital, Elazig, Turkey
Search for more papers by this authorCanan Koç
Department of Software Engineering, Faculty of Engineering, Firat University, Elazig, Turkey
Search for more papers by this authorCorresponding Author
Fatih Özyurt
Department of Software Engineering, Faculty of Engineering, Firat University, Elazig, Turkey
Correspondence
Fatih Özyurt, Department of Software Engineering, College of Engineering, Firat University, Elazig, Turkey.
Email: [email protected]
Search for more papers by this authorYeliz Gül
Department of Radiology, Fethi Sekin City Hospital, Elazig, Turkey
Search for more papers by this authorAbstract
Medical Imaging with Deep Learning has recently become the most prominent topic in the scientific world. Significant results have been obtained in the classification of medical images using deep learning methods, and there has been an increase in studies on malignant types. The main reason for choosing breast cancer is that breast cancer is one of the critical malignant types that increase the death rate in women. In this study, 1236 ultrasound images were collected from Elazig Fethi Sekin City Hospital, and three different ResNet CNN architectures were used for feature extraction. Data were trained with an SVM classifier. In addition, the three ResNet architectures were combined, and novel fused ResNet architecture was used in this study. In addition, these features were used with three different feature selection techniques, MR-MR, NCA, and Relieff. These results are 89.3% obtained from ALL-ResNet architecture and the feature selected with NCA in normal and lesion classification. Normal, malignant, and benign classification best accuracy is 84.9% with ALL-ResNet NCA. Experimental studies show that MR-MR, NCA, and Relieff feature selection algorithms reduce features and give more results that are successful. This indicates that the proposed method is more successful than classical deep learning methods.
CONFLICT OF INTEREST STATEMENT
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
REFERENCES
- 1Serindere M. Meme Görüntülemede Yapay Zekâ Kullanımı. İçinde. Sağlık Bilimlerinde Güncel Araştırmalar Cilt 2. Eds: Evereklioğlu C, Erten M, Kitaplığı G, Ankara, S: 129–146. 2022.
- 2Fujioka T, Kubota K, Mori M, et al. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network. Jpn J Radiol. 2019; 37(6): 466-472. doi:10.1007/s11604-019-00831-5
- 3Huang Y. Two-stage CNNs for computerized BI-RADS categorization in breast ultrasound images—BioMedical engineering OnLine. BioMed Central. 2019;18(1):1-18. doi:10.1186/s12938-019-0626-5
10.1186/s12938?019?0626?5 Google Scholar
- 4Zhang E, Seiler S, Chen M, Lu W, Gu X. BIRADS features-oriented semi-supervised deep learning for breast ultrasound computer-aided diagnosis. Phys Med Biol. 2020; 65(12):125005. doi:10.1088/1361-6560/ab7e7d
- 5Eroğlu Y, Yildirim M, Çinar A. Convolutional neural networks based classification of breast ultrasonography images by hybrid method with respect to benign, malignant, and normal using mRMR. Comput Biol Med. 2021; 133:104407. doi:10.1016/j.compbiomed.2021.104407
- 6Becker AS, Mueller M, Stoffel E, Marcon M, Ghafoor S, Boss A. Classification of breast cancer from ultrasound imaging using a generic deep learning analysis software: a pilot study. Br J Radiol. 2017;91:20170576. doi:10.1259/bjr.20170576
- 7Kim WH, Lee SH, Chang JM, Cho N, Moon WK. Background echotexture classification in breast ultrasound: inter-observer agreement study. Acta Radiol. 2017; 58(12): 1427-1433. doi:10.1177/0284185117695665
- 8Ko KH, Jung HK, Kim I. Analysis of background parenchymal echogenicity on breast ultrasound. Medicine. 2017; 96(33):e7850. doi:10.1097/md.0000000000007850
- 9Özdoğan M. Türkiye Kanser İstatistikleri 2020. Prof. Dr. Mustafa Ozdogan. 2021 https://www.drozdogan.com/turkiye-kanser-istatistikleri-2020/
- 10Akram M, Iqbal M, Daniyal M, Khan AU. Awareness and current knowledge of breast cancer. Biol Res. 2017b; 50(1): 33. doi:10.1186/s40659-017-0140-9
- 11Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018b; 68(6): 394-424. doi:10.3322/caac.21492
- 12Zhang Y, Wang S, Liu G, Yang J. Computer-aided diagnosis of abnormal breasts in mammogram images by weighted-type fractional Fourier transform. Adv Mech Eng. 2016; 8(2):168781401663424. doi:10.1177/1687814016634243
- 13Zhang H, Wu R, Yuan T, et al. DE-Ada*: a novel model for breast mass classification using cross-modal pathological semantic mining and organic integration of multi-feature fusions. Inform Sci. 2020; 539: 461-486. doi:10.1016/j.ins.2020.05.080
- 14Al-antari MA, Han SM, Kim TS. Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital x-ray mammograms. Comput Methods Programs Biomed. 2020; 196:105584. doi:10.1016/j.cmpb.2020.105584
- 15Güldoğan E, Ucuzal H, Küçükakçali Z, Çolak C. Transfer learning-based classification of breast cancer using ultrasound images. Middle BSJ Health Sci. 2021;7(1):74-80. doi:10.19127/mbsjohs.876667
10.19127/mbsjohs.876667 Google Scholar
- 16Aly GH, Marey M, El-Sayed SA, Tolba MF. YOLO based breast masses detection and classification in full-field digital mammograms. Comput Methods Programs Biomed. 2021; 200:105823. doi:10.1016/j.cmpb.2020.105823
- 17Zhuang Z, Yang Z, Raj ANJ, Wei C, Jin P, Zhuang S. Breast ultrasound tumor image classification using image decomposition and fusion based on adaptive multi-model spatial feature fusion. Comput Methods Programs Biomed. 2021; 208:106221. doi:10.1016/j.cmpb.2021.106221
- 18Ragab DA, Attallah O, Sharkas M, Ren J, Marshall S. A framework for breast cancer classification using multi-DCNNs. Comput Biol Med. 2021; 131:104245. doi:10.1016/j.compbiomed.2021.104245
- 19Ma J, He N, Yoon JH, et al. Distinguishing benign and malignant lesions on contrast-enhanced breast cone-beam CT with deep learning neural architecture search. Eur J Radiol. 2021; 142:109878. doi:10.1016/j.ejrad.2021.109878
- 20Zhang N, Li XT, Ma L, Fan ZQ, Sun YS. Application of deep learning to establish a diagnostic model of breast lesions using two-dimensional grayscale ultrasound imaging. Clin Imaging. 2021; 79: 56-63. doi:10.1016/j.clinimag.2021.03.024
- 21El Houby EM, Yassin NI. Malignant and nonmalignant classification of breast lesions in mammograms using convolutional neural networks. Biomed Signal Process Control. 2021; 70:102954. doi:10.1016/j.bspc.2021.102954
- 22Zhang Y, Satapathy SC, Guttery DS, Górriz JM, Wang S. Improved breast cancer classification through combining graph convolutional network and convolutional neural network. Inf Process Manag. 2021; 58(2):102439. doi:10.1016/j.ipm.2020.102439
- 23Aljuaid H, Alturki N, Alsubaie N, Cavallaro L, Liotta A. Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning. Comput Methods Programs Biomed. 2022; 223:106951. doi:10.1016/j.cmpb.2022.106951
- 24Lu SY, Wang SH, Zhang YD. SAFNet: a deep spatial attention network with classifier fusion for breast cancer detection. Comput Biol Med. 2022; 148:105812. doi:10.1016/j.compbiomed.2022.105812
- 25Song M, Kim Y. Unsupervised learning method via triple reconstruction for the classification of ultrasound breast lesions. Biomed Signal Process Control. 2022; 77:103782. doi:10.1016/j.bspc.2022.103782
- 26Zheng Y, Li C, Zhou X, et al. Application of transfer learning and ensemble learning in image-level classification for breast histopathology. Intel Med. 2022 (in press). doi:10.1016/j.imed.2022.05.004
- 27Belhaj Soulami K, Kaabouch N, Nabil Saidi M. Breast cancer: classification of suspicious regions in digital mammograms based on capsule network. Biomed Signal Process Control. 2022; 76:103696. doi:10.1016/j.bspc.2022.103696
- 28Zou Y, Chen S, Che C, Zhang J, Zhang Q. Breast cancer histopathology image classification based on dual-stream high-order network. Biomed Signal Process Control. 2022; 78:104007. doi:10.1016/j.bspc.2022.104007
- 29Subasree S, Sakthivel N, Tripathi K, Agarwal D, Tyagi AK. Combining the advantages of radiomic features based feature extraction and hyper parameters tuned RERNN using LOA for breast cancer classification. Biomed Signal Process Control. 2022; 72:103354. doi:10.1016/j.bspc.2021.103354
- 30Kaplan E, Chan WK, Dogan S, et al. Automated BI-RADS classification of lesions using pyramid triple deep feature generator technique on breast ultrasound images. Med Eng Phys. 2022; 108:103895. doi:10.1016/j.medengphy.2022.103895
- 31Abdalla G, Özyurt F. Sentiment analysis of fast food companies with deep learning models. Comput J. 2021; 64(3): 383-390. doi:10.1093/comjnl/bxaa131
- 32O'Shea K. An introduction to convolutional neural networks. Semantic Scholar. 2015 https://www.semanticscholar.org/paper/An-Introduction-to-Convolutional-Neural-Networks-O%E2%80%99Shea-Nash/f46714d200d69eb9cb5cce176297b89a3f5e3a2c
- 33Gonçalves CB, Souza JR, Fernandes H. CNN architecture optimization using bio-inspired algorithms for breast cancer detection in infrared images. Comput Biol Med. 2022; 142:105205. doi:10.1016/j.compbiomed.2021.105205
- 34Aktürk C, Aydemir E, Rashid YMH. Classification of eye images by personal details with transfer learning algorithms. Acta Inform Pragensia. 2022;0. doi:10.18267/j.aip.190
10.18267/j.aip.190 Google Scholar
- 35Subasi A, Mitra A, Özyurt F, Tuncer T. Automated COVID-19 detection from ct images using deep learning. CRC Press EBooks; 2021: 153-176. doi:10.1201/9781003121152-7
10.1201/9781003121152?7 Google Scholar
- 36Kamble RM, Chan GCY, Perdomo O, et al. Automated diabetic macular edema (DME) analysis using fine tuning with inception-Resnet-v2 on OCT images. 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES). 2018. doi:10.1109/iecbes.2018.8626616
- 37Fang T, Chen P, Zhang J, Wang B. Crop leaf disease grade identification based on an improved convolutional neural network. J Electron Imaging. 2020; 29(1): 1. doi:10.1117/1.jei.29.1.013004
- 38Liu Y, She GR, Chen SX. Magnetic resonance image diagnosis of femoral head necrosis based on ResNet18 network. Comput Methods Programs Biomed. 2021; 208:106254. doi:10.1016/j.cmpb.2021.106254
- 39Nawandhar A, Kumar N, Yamujala L. Performance analysis of neighborhood component feature selection for Oral histopathology images. 2019 PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS). 2019. doi:10.1109/phdedits47523.2019.8986921
- 40Zhao Z, Anand R, Wang M. Maximum relevance and minimum redundancy feature selection methods for a marketing machine learning platform. 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA). 2019. doi:10.1109/dsaa.2019.00059
- 41Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol. 2005; 03(2): 185-205. doi:10.1142/s0219720005001004
- 42Kira K, Rendell LA. A practical approach to feature selection. Elsevier EBooks; 1992: 249-256. doi:10.1016/b978-1-55860-247-2.50037-1
- 43Le TT, Urbanowicz RJ, Moore JH, McKinney BA. STatistical inference relief (STIR) feature selection. Bioinformatics. 2019; 35(8): 1358-1365. doi:10.1093/bioinformatics/bty788
- 44Aydemir E, Yalcinkaya MA, Barua PD, et al. Hybrid deep feature generation for appropriate face mask use detection. Int J Environ Res Public Health. 2022b; 19(4): 1939. doi:10.3390/ijerph19041939
- 45Aydemir E, Al-Azzawi̇ MSH Yerel faz niceleme ile ayak görüntülerinin kişi, yaş ve cinsiyete göre sınıflandırılması. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi. 2022. doi:10.28948/ngumuh.1055199
- 46Özyurt F, Avci E, Sert E. UC-Merced image classification with CNN feature reduction using wavelet entropy optimized with genetic algorithm. Trait du Signal. 2020; 37(3): 347-353. doi:10.18280/ts.370301
- 47Diker A, Sönmez Y, Özyurt F, Avci EK, Avcı D. Examination of the ECG signal classification technique DEA-ELM using deep convolutional neural network features. Multimed Tools Appl. 2021; 80(16): 24777-24800. doi:10.1007/s11042-021-10517-8
- 48El Rejal AA, Nagaty K, Pester A. An end-to-end CNN approach for enhancing underwater images using spatial and frequency domain techniques. Acadlore Trans Mach Learn. 2023; 2(1):1-12. doi:10.56578/ataiml020101
10.56578/ataiml020101 Google Scholar
- 49Khrisat M, Alqadi Z. Performance evaluation of ANN models for prediction. Acadlore Trans Mach Learn. 2023; 2(1):13-20. doi:10.56578/ataiml020102
10.56578/ataiml020102 Google Scholar
- 50Mutlu G, Acı IN. SVM-SMO-SGD: a hybrid-parallel support vector machine algorithm using sequential minimal optimization with stochastic gradient descent. Parallel Comput. 2022; 113:102955. doi:10.1016/j.parco.2022.102955