CSDL-Net: An iterative network based on compressed sensing and deep learning
Cong Chao Bian
School of Computer and Information, Hohai University, Nanjing, China
Search for more papers by this authorCorresponding Author
Ning Cao
School of Computer and Information, Hohai University, Nanjing, China
Correspondence
Ning Cao, School of Computer and Information, Hohai University, Nanjing 210098, China.
Email: [email protected]
Search for more papers by this authorMing He Mao
School of Computer and Information, Hohai University, Nanjing, China
Search for more papers by this authorCong Chao Bian
School of Computer and Information, Hohai University, Nanjing, China
Search for more papers by this authorCorresponding Author
Ning Cao
School of Computer and Information, Hohai University, Nanjing, China
Correspondence
Ning Cao, School of Computer and Information, Hohai University, Nanjing 210098, China.
Email: [email protected]
Search for more papers by this authorMing He Mao
School of Computer and Information, Hohai University, Nanjing, China
Search for more papers by this authorAbstract
Compressed sensing magnetic resonance imaging (CS-MRI), as a traditional model-based method, provides a theoretical framework for MRI reconstruction. The problems with traditional CS-MRI reconstruction are solved by iterative numerical solvers, which have expensive computational cost and are long time consuming, limiting its application in MRI reconstruction. At present, deep learning (DL) as a new data-driven method has made rapid progress in the field of computer vision and image processing. In this article, we apply DL network model based on CS (CSDL-Net), a DL method with compressed sensing thory, for MR image reconstruction to generate high-quality images in a short time with a lower sampling rate. It includes three blocks: data fusion block, image reconstruction block, and image fusion block. We utilize single-coil part from FastMRI dataset, a widely known public database. Results show that the validation set. The average peak signal-to-noise ratio (PSNR) was 32.31 dB, and the structural similarity (SSIM) was 0.729, with a processing time of 1.21 s on the graphics processing unit (GPU). Therefore, the proposed method has a shorter reconstruction time and better image quality than the existing methods.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in [“FastMRI”] at http://doi.org/10.1148/ryai.2020190007, Reference number 22.
REFERENCES
- 1Zeng W, Peng J, Wang S, Liu Q. A comparative study of CNN-based super-resolution methods in MRI reconstruction and its beyond. Signal Processing Image Communication. 2019; 81:115701. doi:10.1016/j.image.2019.115701
- 2Donoho DL. Compressed sensing. IEEE Transactions on Information Theory. 2006; 52(4): 1289-1306.
- 3Huang J, Zhang S, Metaxas D. Efficient mr image reconstruction for compressed mr imaging. Medical Image Analysis. 2011; 15(5): 670-679. doi:10.1016/j.media.2011.06.001
- 4Wang S, Su Z, Ying l, et al. Accelerating magnetic resonance imaging via deep learning. IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016). IEEE. 2016: 514-517. doi:10.1109/ISBI.2016.7493320
10.1109/ISBI.2016.7493320 Google Scholar
- 5Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sciences. 2009; 2(1): 183-202. doi:10.1137/08071654
- 6Yang J, Zhang Y, Yin W. A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data. IEEE Journal of Selected Topics in Signal Processing. 2010; 4(2): 288-297.
- 7Zibulevsky M, Elad M. L1-l2 optimization in signal and image processing. IEEE Signal Processing Magazine. 2010; 27(3): 76-88.
- 8Lustig M, Donoho D, Pauly JM. Sparse mri: the application of compressed sensing for rapid mr imaging. Magn Reson Med. 2007; 58(6): 1182-1119. doi:10.1002/mrm.21391
- 9Tai S-C, Yung-Gi W, Lin C-W. An adaptive 3-d discrete cosine transform coder for medical image compression. IEEE Trans Inf Technol Biomed. 2000; 4(3): 259-263.
- 10Daubechies I. Ten lectures on wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics. London, UK: SIAM. 1992.
10.1137/1.9781611970104 Google Scholar
- 11Aharon M, Elad M, Bruckstein A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing. 2006; 54(11): 4311-4322.
- 12Engan K, Aase SO, Hakon Husoy J. Method of optimal directions for frame design. 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99. Vol 5. (Cat. No.99CH36258). IEEE. 1999: 2443-2446.
10.1109/ICASSP.1999.760624 Google Scholar
- 13Qu X, Hou Y, Lam F, Guo D, Zhong J, Chen Z. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med Image Anal. 2014; 18(6): 843-856. doi:10.1016/j.media.2013.09.007
- 14Dong W, Shi G, Li X, Ma Y, Huang F. Compressive sensing via nonlocal low-rank regularization. IEEE Trans Image Process. 2014; 23(8): 3618-3632.
- 15Ravishankar S, Bresler Y. Mr image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imaging. 2011; 30(5): 1028-1041.
- 16Wang S, Liu J, Peng X, Dong P, Liu Q, Liang D. Two-layer tight frame sparsifying model for compressed sensing magnetic resonance imaging. Biomed Res Int. 2016; 2016: 1–7. doi:10.1155/2016/2860643
- 17Pfister L, Bresler Y. Learning filter bank sparsifying transforms. IEEE Transactions on Signal Processing. 2019; 67(2): 504-519.
- 18Zhan Z, Cai J-F, Guo D, Liu Y, Chen Z, Qu X. Fast multiclass dictionaries learning with geometrical directions in mri reconstruction. IEEE Trans Biomed Eng. 2016; 63(9): 1850-1861. doi:10.1109/TBME.2015.2503756
- 19Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D. A deep cascade of convolutional neural networks for dynamic mr image reconstruction. IEEE Trans Med Imaging. 2018; 37(2): 491-503.
- 20Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM. 2017; 60(6): 84-90. doi:10.1145/3065386
- 21He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Comp Soc; Comp Vis Fdn; 2016: 770-778. doi:10.1109/CVPR.2016.90
10.1109/CVPR.2016.90 Google Scholar
- 22Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. Springer International Publishing. Vol 9351; 2015: 234-241. doi:10.1007/978-3-319-24574-428
10.1007/978?3?319?24574?428 Google Scholar
- 23Knoll F, Zbontar J, Sriram A, et al. fastMRI: a publicly available raw k-space and DICOM dataset of knee images for accelerated MR image reconstruction using machine learning. Radiology. 2020; 2(1): e190007–e190007.
- 24Eo T, Jun Y, Kim T, Jang J, Lee HJ, Hwang D. Kiki-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn Reson Med. 2018; 80(5): 2188-2201. doi:10.1002/mrm.27201
- 25Adler J, Ktem O. Learned primal-dual reconstruction. IEEE Trans Med Imaging. 2018; 37(6): 1322-1332. doi:10.1109/TMI.2018.2799231
- 26Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vision. 2011; 40(1): 120-145, cited By 2253. doi:10.1007/s10851-010-0251-1
- 27Ramzi Z, Ciuciu P, Starck J-L. Benchmarking mri reconstruction neural networks on large public datasets. Appl Sci Basel. 2020; 10(5): 1816. doi:10.3390/app10051816
- 28Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. In: Z Ghahramani, M Welling, C Cortes, N Lawrence, K Weinberger, eds. Advances In Neural Information Processing Systems 27 (NIPS 2014), Vol. 27 of Advances in Neural Information Processing Systems. 28th Conference on Neural Information Processing Systems (NIPS); 2014.
- 29Kim T, Cha M, Kim H, Lee JK, Kim J. Learning to discover cross-domain relations with generative adversarial networks, arXiv e-prints.
- 30Zhu J, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. 2017 IEEE International Conference on Computer Vision (ICCV). Vol 2017. IEEE. 2017: 2242-2251.
10.1109/ICCV.2017.244 Google Scholar
- 31Yang Y, Sun J, Li H, Xu Z. Admm-csnet: a deep learning approach for image compressive sensing. IEEE Trans Pattern Anal Mach Intell. 2020; 42(3): 521-538.
- 32Zhang J, Ghanem B. ISTA-Net: interpretable optimization-inspired deep network for image compressive sensing. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Conference on Computer Vision and Pattern Recognition; 2018: 1828-1837. doi:10.1109/CVPR.2018.00196
10.1109/CVPR.2018.00196 Google Scholar
- 33Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn. 2010; 3(1): 1-122.
- 34Lauzon M, Rutt B. Polar sampling in k-space: reconstruction effects. Magn Reson Med. 1998; 40(5): 769-782. doi:10.1002/mrm.1910400519
- 35Ogura Y, Sekihara K. A new method for static imaging of a rotating object. Journal of Magnetic Resonance (1969). 1989; 83(1): 177–182. doi:10.1016/0022-2364(89)90303-X
- 36Noll DC. Multishot rosette trajectories for spectrally selective mr imaging. IEEE Trans Med Imaging. 1997; 16(4): 372-377.
- 37Scheffler K, Hennig T. Frequency resolved single-shot mr imaging using stochastic k-space trajectories. Magn Reson Med. 1996; 35(4): 569-576. doi:10.1002/mrm.1910350417
- 38Ran M, Xia W, Huang Y, et al. MD-Recon-Net: a parallel dual-domain convolutional neural network for compressed sensing MRI. IEEE Trans Radiat Plasma Med Sci. 2021; 5(1): 120-135. doi:10.1109/TRPMS.2020.2991877
- 39Lee J, Kim H, Chung H, Ye JC. Deep learning fast MRI using channel attention in magnitude domain. 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI): IEEE: 2020: 917-920. doi:10.1109/ISBI45749.2020.9098416
10.1109/ISBI45749.2020.9098416 Google Scholar