MRtrix: Diffusion tractography in crossing fiber regions
Corresponding Author
J-Donald Tournier
Brain Research Institute, Florey Neuroscience Institutes, Melbourne, Victoria, Australia
Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia
Brain Research Institute, Florey Neuroscience Institutes, Melbourne, Victoria, AustraliaSearch for more papers by this authorFernando Calamante
Brain Research Institute, Florey Neuroscience Institutes, Melbourne, Victoria, Australia
Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia
Search for more papers by this authorAlan Connelly
Brain Research Institute, Florey Neuroscience Institutes, Melbourne, Victoria, Australia
Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia
Search for more papers by this authorCorresponding Author
J-Donald Tournier
Brain Research Institute, Florey Neuroscience Institutes, Melbourne, Victoria, Australia
Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia
Brain Research Institute, Florey Neuroscience Institutes, Melbourne, Victoria, AustraliaSearch for more papers by this authorFernando Calamante
Brain Research Institute, Florey Neuroscience Institutes, Melbourne, Victoria, Australia
Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia
Search for more papers by this authorAlan Connelly
Brain Research Institute, Florey Neuroscience Institutes, Melbourne, Victoria, Australia
Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia
Search for more papers by this authorAbstract
In recent years, diffusion-weighted magnetic resonance imaging has attracted considerable attention due to its unique potential to delineate the white matter pathways of the brain. However, methodologies currently available and in common use among neuroscientists and clinicians are typically based on the diffusion tensor model, which has comprehensively been shown to be inadequate to characterize diffusion in brain white matter. This is due to the fact that it is only capable of resolving a single fiber orientation per voxel, causing incorrect fiber orientations, and hence pathways, to be estimated through these voxels. Given that the proportion of affected voxels has been recently estimated at 90%, this is a serious limitation. Furthermore, most implementations use simple “deterministic” streamlines tracking algorithms, which have now been superseded by “probabilistic” approaches. In this study, we present a robust set of tools to perform tractography, using fiber orientations estimated using the validated constrained spherical deconvolution method, coupled with a probabilistic streamlines tracking algorithm. This methodology is shown to provide superior delineations of a number of known white matter tracts, in a manner robust to crossing fiber effects. These tools have been compiled into a software package, called MRtrix, which has been made freely available for use by the scientific community. © 2012 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 22, 53–66, 2012
REFERENCES
- D.C. Alexander, Multiple-fiber reconstruction algorithms for diffusion MRI. Ann NY Acad Sci 1064( 2005), 113–133.
- D.C. Alexander andG.J. Barker, Optimal imaging parameters for fiber-orientation estimation in diffusion MRI. NeuroImage 27( 2005), 357–367.
- D.C. Alexander,G.J. Barker, andS.R. Arridge, Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data. Magn Reson Med 48( 2002), 331–340.
- A.L. Alexander,K.M. Hasan,M. Lazar,J.S. Tsuruda, andD.L. Parker, Analysis of partial volume effects in diffusion-tensor MRI. Magn Reson Med 45( 2001), 770–780.
- A.W. Anderson, Measurement of fiber orientation distributions using high angular resolution diffusion imaging. Magn Reson Med 54( 2005), 1194–1206.
- Y. Assaf andP.J. Basser, Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. NeuroImage 27( 2005), 48–58.
- Y. Assaf andO. Pasternak, Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34( 2008), 51–61.
- P.J. Basser, MR diffusion tensor spectroscopy and imaging. Biophys J 66( 1994), 259–267.
- P.J. Basser, Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 8( 1995), 333–344.
- P.J. Basser,J. Mattiello, andD. LeBihan, Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson Ser B 103( 1994), 247–254.
- T.E.J. Behrens,H.J. Berg,S. Jbabdi,M.F.S. Rushworth, andM.W. Woolrich, Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? NeuroImage 34 ( 2007), 144–155.
- T.E.J. Behrens,M.W. Woolrich,M. Jenkinson,H. Johansen-Berg,R.G. Nunes,S. Clare,P.M. Matthews,J.M. Brady, andS.M. Smith, Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 50( 2003), 1077–1088.
- L. Bello,A. Gambini,A. Castellano,G. Carrabba,F. Acerbi,E. Fava,C. Giussani,M. Cadioli,V. Blasi,A. Casarotti,C. Papagno,A.K. Gupta,S. Gaini,G. Scotti, andA. Falini, Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. NeuroImage 39( 2008), 369–382.
- F. Calamante,J.-D. Tournier,R.M. Heidemann,A. Anwander,G.D. Jackson, andA. Connelly, Track density imaging (TDI): Validation of super resolution property. NeuroImage 56( 2011), 1259–1266.
- F. Calamante,J.-D. Tournier,G.D. Jackson, andA. Connelly, Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping. NeuroImage 53( 2010), 1233–1243.
- F. Calamante,J.-D. Tournier,N.D. Kurniawan,Z. Yang,E. Gyengesi,G.J. Galloway,D.C. Reutens, andA. Connelly, Super-resolution track-density imaging studies of mouse brain: Comparison to histology. NeuroImage 59( 2012), 286–296.
- M. Catani,R.J. Howard,S. Pajevic, andD.K. Jones, Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage 17( 2002), 77–94.
- X. Chen,D. Weigel,O. Ganslandt,M. Buchfelder, andC. Nimsky, Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery. NeuroImage 45( 2009), 286–297.
- O. Ciccarelli,M. Catani,H. Johansen-Berg,C. Clark, andA. Thompson, Diffusion-based tractography in neurological disorders: Concepts, applications, and future developments. Lancet Neurol 7( 2008), 715–727.
- C.A. Clark,T.R. Barrick,M.M. Murphy, andB.A. Bell, White matter fiber tracking in patients with space-occupying lesions of the brain: A new technique for neurosurgical planning? NeuroImage 20 ( 2003), 1601–1608.
- T.E. Conturo,N.F. Lori,T.S. Cull,E. Akbudak,A.Z. Snyder,J.S. Shimony,R.C. McKinstry,H. Burton, andM.E. Raichle, Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96( 1999), 10422–10427.
- F. Dell'Acqua,G. Rizzo,P. Scifo,R.A. Clarke,G. Scotti, andF. Fazio, A model-based deconvolution approach to solve fiber crossing in diffusion-weighted MR imaging. IEEE Trans Bio-Med Eng 54( 2007), 462–472.
- M. Descoteaux,R. Deriche,T.R. Knösche, andA. Anwander, Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imag 28( 2009), 269–286.
- J. Dubois,C. Poupon,F. Lethimonnier, andD. Le Bihan, Optimized diffusion gradient orientation schemes for corrupted clinical DTI data sets. MAGMA 19 ( 2006), 134–143.
- L.R. Frank, Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 45( 2001), 935–939.
- H.A. Haroon,D.M. Morris,K.V. Embleton,D.C. Alexander, andG.J.M. Parker, Using the model-based residual bootstrap to quantify uncertainty in fiber orientations from Q-ball analysis. IEEE Trans Med Imag 28( 2009), 535–550.
- T. Hosey,G. Williams, andR. Ansorge, Inference of multiple fiber orientations in high angular resolution diffusion imaging. Magn Reson Med 54( 2005), 1480–1489.
- K.M. Jansons andD.C. Alexander, Persistent angular structure: New insights from diffusion magnetic resonance imaging data. Inverse Probl 19( 2003), 1031–1046.
- B. Jeurissen,A. Leemans,D.K. Jones,J.-D. Tournier, andJ. Sijbers, Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Hum Brain Mapp 32( 2011), 461–479.
- B. Jeurissen,A. Leemans,J.-D. Tournier,D.K. Jones, andJ. Sijbers, Estimating the number of fiber orientations in diffusion MRI voxels: A constrained spherical deconvolution study, Proceedings of the International Society for Magnetic Resonance in Medicine, Stockholm, Sweden, 2010, pp. 573.
- B. Jian andB.C. Vemuri, A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted MRI. IEEE Trans Med Imag 26( 2007), 1464–1471.
- H. Johansen-Berg andM.F.S. Rushworth, Using diffusion imaging to study human connectional anatomy. Annu Rev Neurosci 32( 2009), 75–94.
- D.K. Jones, The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study. Magn Reson Med 51( 2004), 807–815.
- D.K. Jones andM. Cercignani, Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed 23( 2010), 803–820.
-
D.K. Jones,M.A. Horsfield, andA. Simmons,
Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging.
Magn Reson Med
42(
1999),
515–525.
10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- D.K. Jones andC. Pierpaoli, Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach. Magn Reson Med 53( 2005), 1143–1149.
- D.K. Jones,A.R. Travis,G. Eden,C. Pierpaoli, andP.J. Basser, PASTA: Pointwise assessment of streamline tractography attributes. Magn Reson Med 53( 2005), 1462–1467.
- M. Kinoshita,K. Yamada,N. Hashimoto,A. Kato,S. Izumoto,T. Baba,M. Maruno,T. Nishimura, andT. Yoshimine, Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: Initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. NeuroImage 25( 2005), 424–429.
- M.A. Koch,D.G. Norris, andM. Hund-Georgiadis, An investigation of functional and anatomical connectivity using magnetic resonance imaging. NeuroImage 16( 2002), 241–250.
- T. Koga,K. Maruyama,K. Kamada,T. Ota,M. Shin,D. Itoh,N. Kunii,K. Ino,A. Terahara,S. Aoki,Y. Masutani, andN. Saito, Outcomes of diffusion tensor tractography-integrated stereotactic radiosurgery. Int J Radiat Oncol Biol Phys, in press, DOI: 10.1016/j.ijrobp.2010.11.046.
- M. Lazar andA.L. Alexander, Bootstrap white matter tractography (BOOT-TRAC). NeuroImage 24( 2005), 524–532.
- D.J.C. Mackay, “Monte Carlo methods: Rejection sampling,” Information theory, inference, and learning algorithms, Cambridge University Press, Cambridge, UK, 2003, pp. 364–365.
- R.X. Moldrich,K. Pannek,R. Hoch,J.L. Rubenstein,N.D. Kurniawan, andL.J. Richards, Comparative mouse brain tractography of diffusion magnetic resonance imaging. NeuroImage 51( 2010), 1027–1036.
- S. Mori andP.C.M. van Zijl, Fiber tracking: Principles and strategies—a technical review. NMR Biomed 15( 2002), 468–480.
- S. Mori,B. Crain,V. Chacko, andP. van Zijl, Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45( 1999), 265–269.
- J.M. Newton,N.S. Ward,G.J.M. Parker,R. Deichmann,D.C. Alexander,K.J. Friston, andR.S.J. Frackowiak, Non-invasive mapping of corticofugal fibres from multiple motor areas—relevance to stroke recovery. Brain 129( 2006), 1844–1858.
- E. Özarslan,T.M. Shepherd,B.C. Vemuri,S.J. Blackband, andT.H. Mareci, Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31( 2006), 1086–1103.
- G. Parker andD. Alexander, Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue. Philos Trans R Soc B: Biol Sci 360( 2005), 893–902.
- G.J.M. Parker,H.A. Haroon, andC.A.M. Wheeler-Kingshott, A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J Magn Reson Imag 18( 2003), 242–254.
- G.J.M. Parker,C.A.M. Wheeler-Kingshott, andG.J. Barker, Estimating distributed anatomical connectivity using fast marching methods and diffusion tensor imaging. IEEE Trans Med Imag 21( 2002), 505–512.
- D. Raffelt,J.-D. Tournier,S. Rose,G.R. Ridgway,R. Henderson,S. Crozier,O. Salvado, andA. Connelly, Apparent fibre density: A novel measure for the analysis of diffusion-weighted magnetic resonance images. NeuroImage, in press, DOI: 10.1016/j.neuroimage.2011.10.045.
- A. Ramirez-Manzanares,P.A. Cook,M. Hall,M. Ashtari, andJ.C. Gee, Resolving axon fiber crossings at clinical b-values: An evaluation study. Med Phys 38( 2011), 5239–5253.
- M.H.T. Reinges,T. Krings,H. Kränzlein,F.-J. Hans,A. Thron, andJ.M. Gilsbach, Functional and diffusion-weighted magnetic resonance imaging for visualization of the postthalamic visual fiber tracts and the visual cortex. Minim Invasive Neurosurg 47( 2004), 160–164.
- K.K. Seunarine andD.C. Alexander, Linear persistent angular structure MRI and non-linear spherical deconvolution for diffusion MRI, Proceedings of the International Society for Magnetic Resonance in Medicine, Seattle, Washington, USA, 2006, pp. 2767.
-
J.D. Tournier,
“The biophysics of crossing fibres,”
Diffusion MRI: Theory, methods, and applications,D.K. Jones (Editors),
Oxford University Press,
USA,
2010, pp.
465–482.
10.1093/med/9780195369779.003.0028 Google Scholar
- J.D. Tournier,F. Calamante, andA. Connelly, Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35( 2007), 1459–1472.
- J.-D. Tournier,F. Calamante, andA. Connelly, How many diffusion gradient directions are required for HARDI? Proceedings of the International Society for Magnetic Resonance in Medicine, Hawai'i, USA, 2009, pp. 358.
- J.D. Tournier,F. Calamante,D.G. Gadian, andA. Connelly, Diffusion-weighted magnetic resonance imaging fibre tracking using a front evolution algorithm. NeuroImage 20( 2003), 276–288.
- J.D. Tournier,F. Calamante,D.G. Gadian, andA. Connelly, Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23( 2004), 1176–1185.
- J.D. Tournier,F. Calamante,M.D. King,D.G. Gadian, andA. Connelly, Limitations and requirements of diffusion tensor fiber tracking: An assessment using simulations. Magn Reson Med 47( 2002), 701–708.
- J.-D. Tournier,S. Mori, andA. Leemans, Diffusion tensor imaging and beyond. Magn Reson Med 65( 2011), 1532–1556.
- J.D. Tournier,C.-H. Yeh,F. Calamante,K.-H. Cho,A. Connelly, andC.-P. Lin, Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data. NeuroImage 42( 2008), 617–625.
- D.S. Tuch, Q-ball imaging. Magn Reson Med 52( 2004), 1358–1372.
- D.S. Tuch,T.G. Reese,M.R. Wiegell,N. Makris,J.W. Belliveau, andV.J. Wedeen, High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48( 2002), 577–582.
- D.S. Tuch,R.M. Weisskoff,J.W. Belliveau, andV.J. Wedeen, High angular resolution diffusion imaging of the human brain, Proceedings of the International Society for Magnetic Resonance in Medicine, Philadelphia, Pennsylvania, USA, 1999, pp. 321.
- S. Wakana,H. Jiang,L.M. Nagae-Poetscher,P.C.M. van Zijl, andS. Mori, Fiber tract-based atlas of human white matter anatomy. Radiology 230( 2004), 77–87.
- V.J. Wedeen,P. Hagmann,W.-Y.I. Tseng,T.G. Reese, andR.M. Weisskoff, Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54( 2005), 1377–1386.
- V.J. Wedeen,T.G. Reese,D.S. Tuch,M.R. Wiegell,J.-G. Dou,R.M. Weisskoff, andD. Chessler, Mapping fiber orientation spectra in cerebral white matter with Fourier transform diffusion MRI, Proceedings of the International Society for Magnetic Resonance in Medicine, Denver, Colorado, USA, 2000, pp. 82.
- V.J. Wedeen,R.P. Wang,J.D. Schmahmann,T. Benner,W.Y.I. Tseng,G. Dai,D.N. Pandya,P. Hagmann,H. D'Arceuil, andA.J. de Crespigny, Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage 41( 2008), 1267–1277.
- W. Zhan andY. Yang, How accurately can the diffusion profiles indicate multiple fiber orientations? A study on general fiber crossings in diffusion MRI. J Magn Reson 183( 2006), 193–202.
- H. Zhu,L. Kong,R. Li,M. Styner,G. Gerig,W. Lin, andJ. H. Gilmore, FADTTS: Functional analysis of diffusion tensor tract statistics. NeuroImage 56( 2011), 1412–1425.