Overview of Computational Simulations in Quantum Dots
Yang Hong
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
Search for more papers by this authorShuimu Wu
SPIC Power Plant Operation Technology (Beijing) CO., Ltd, Beijing, 102209 China
Search for more papers by this authorXinyu Wang
Institute of Thermal Science and Technology, Shandong University, Jinan, 250061 China
Search for more papers by this authorCorresponding Author
Jingchao Zhang
- [email protected]
- +01-402-472-6400
Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
Search for more papers by this authorYang Hong
Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
Search for more papers by this authorShuimu Wu
SPIC Power Plant Operation Technology (Beijing) CO., Ltd, Beijing, 102209 China
Search for more papers by this authorXinyu Wang
Institute of Thermal Science and Technology, Shandong University, Jinan, 250061 China
Search for more papers by this authorCorresponding Author
Jingchao Zhang
- [email protected]
- +01-402-472-6400
Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
Search for more papers by this authorGraphical Abstract
Abstract
Quantum dots (QDs) are semiconductor nanocrystals that exhibit exceptional properties not found in their bulk counterparts. They have attracted extensive academic and industrial attentions due to their quantum confinement effects and unique photophysical properties. Computational approaches such as first principles and classical molecular dynamics simulations are indispensable tools in both scientific studies and industrial applications of QDs. In this review, the state-of-the-art progress in computational simulations of optical, electronic and thermal properties of QDs is summarized and discussed. First, the physics of QDs in low dimensional materials are comprehensively reviewed. Then, the theoretical basis and practical applications of two main computational methods are presented. Properties of QDs revealed by computational studies are summarized respectively. Finally, the paper was concluded with comments on future directions in computational modeling of QDs.
References
- 1A. P. Alivisatos, Science 1996, 271, 933–937.
- 2M. D. Regulacio, M.-Y. Han, Acc. Chem. Res. 2010, 43, 621–630.
- 3H. Zhao, M. Chaker, D. Ma, J. Phys. Chem. C 2009, 113, 6497–6504.
- 4H. Zhao, M. Chaker, N. Wu, D. Ma, J. Mater. Chem. 2011, 21, 8898–8904.
- 5H. Zhao, H. Liang, F. Vidal, F. Rosei, A. Vomiero, D. Ma, J. Phys. Chem. C 2014, 118, 20585–20593.
- 6Y. Nagaoka, R. Tan, R. P. Li, H. Zhu, D. Eggert, Y. M. A. Wu, Y. Z. Liu, Z. W. Wang, O. Chen, Nature 2018, 561, 378–382.
- 7T. Hensgens, T. Fujita, L. Janssen, X. Li, C. J. Van Diepen, C. Reichl, W. Wegscheider, S. Das Sarma, L. M. K. Vandersypen, Nature 2017, 548, 70–73.
- 8J. Bao, M. G. Bawendi, Nature 2015, 523, 67–70.
- 9W. C. W. Chan, S. Nie, Science 1998, 281, 2016–2018.
- 10M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science 1998, 281, 2013–2016.
- 11Z. L. Huang, Y. D. Zhao, Q. M. Luo, Curr. Anal. Chem. 2006, 2, 59–66.
- 12S. C. Huang, C. W. Yeh, G. H. Chen, M. C. Liu, H. S. Chen, ACS Appl. Mater. Interfaces 2019, 11, 2516–2525.
- 13W. C. Wang, B. Zhou, S. H. Xu, Z. M. Yang, Q. Y. Zhang, Prog. Mater. Sci. 2019, 101, 90–171.
- 14B. Guzelturk, M. Pelton, M. Olutas, H. V. Demir, Nano Lett. 2019, 19, 277–282.
- 15G. S. Selopal, H. G. Zhao, G. J. Liu, H. Zhang, X. Tong, K. H. Wang, J. Tang, X. H. Sun, S. H. Sun, F. Vidal, Y. Q. Wang, Z. M. M. Wang, F. Rosei, Nano Energy 2019, 55, 377–388.
- 16Z. Zeng, C. S. Garoufalis, A. F. Terzis, S. Baskoutas, J. Appl. Phys. 2013, 114, 023510.
- 17H. T. Chen, A. Q. Guo, J. Zhu, L. W. Cheng, Q. Wang, Appl. Surf. Sci. 2019, 465, 656–664.
- 18Y. Wei, Z. Y. Cheng, J. Lin, Chem. Soc. Rev. 2019, 48, 310–350.
- 19S. X. Wang, Y. Wang, Y. Zhang, X. T. Zhang, X. Y. Shen, X. W. Zhuang, P. Lu, W. W. Yu, S. V. Kershaw, A. L. Rogach, J. Phys. Chem. Lett. 2019, 10, 90–96.
- 20F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9, 4533–4542.
- 21M. Vörös, D. Rocca, G. Galli, G. T. Zimanyi, A. Gali, Phys. Rev. B 2013, 87, 155402.
- 22P. K. Santra, P. V. Kamat, J. Am. Chem. Soc. 2012, 134, 2508–2511.
- 23Y. Liu, M. Gibbs, J. Puthussery, S. Gaik, R. Ihly, H. W. Hillhouse, M. Law, Nano Lett. 2010, 10, 1960–1969.
- 24F. L. Yuan, Z. F. Xi, X. Y. Shi, Y. C. Li, X. H. Li, Z. N. Wang, L. Z. Fan, S. H. Yang, Adv. Opt. Mater. 2019, 7, 1801202.
- 25B. L. Xue, Y. Yang, Y. C. Sun, J. S. Fan, X. P. Li, Z. Zhang, Int. J. Biol. Macromol. 2019, 122, 954–961.
- 26L. F. Zhou, M. Qiao, L. Zhang, L. Sun, Y. Zhang, W. W. Liu, J. Lumin. 2019, 206, 158–163.
- 27N. Li, Z. T. Liu, S. L. Hu, Q. Chang, C. R. Xue, H. Q. Wang, Appl. Surf. Sci. 2019, 473, 70–76.
- 28K. Yu, M. C. Goh, Abstr. Pap. Am. Chem. Soc. 2018, 256.
- 29L. Najafi, S. Bellani, B. Martin-Garcia, R. Oropesa-Nunez, A. E. D. Castillo, M. Prato, I. Moreels, F. Bonaccorso, Chem. Mater. 2017, 29, 5782–5786.
- 30C. Li, Y. Yue, Nanotechnology 2014, 25, 435703.
- 31C. Li, J. Zhang, Q. Xiong, G. Lorenzini, Y. Yue, Journal of Engineering Thermophysics 2018, 27, 345–356.
- 32N. Li, Z. Liu, S. Hu, Q. Chang, C. Xue, H. Wang, Appl. Surf. Sci. 2019, 473, 70–76.
- 33O. V. Prezhdo, Acc. Chem. Res. 2009, 42, 2005–2016.
- 34M. Rastgoo, S.-M. Tabatabaei, M. Fathipour, The European Physical Journal B 2018, 91, 121.
- 35K. G. Reeves, A. Schleife, A. A. Correa, Y. Kanai, Nano Lett. 2015, 15, 6429–6433.
- 36D. Lee, J. L. DuBois, Y. Kanai, Nano Lett. 2014, 14, 6884–6888.
- 37J. B. Li, L. W. Wang, Phys. Lett. 2004, 84, 3648–3650.
- 38X. Y. Cui, R. K. Zheng, Z. W. Liu, L. Li, C. Stampfl, S. P. Ringer, Appl. Phys. Lett. 2011, 99, 183102.
- 39S. Ghosh, M. Awasthi, M. Ghosh, M. Seibt, T. A. Niehaus, 2D Mater. 2016, 3, 041008.
10.1088/2053-1583/3/4/041008 Google Scholar
- 40W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, 1133–1138.
- 41R. G. Parr, Springer Netherlands, Dordrecht, 1980, pp. 5–15.
- 42P. A. M. Dirac, Mathematical Proceedings of the Cambridge Philosophical Society 1930, 26, 376–385.
- 43D. M. Ceperley, B. J. Alder, Phys. Rev. Lett. 1980, 5 4, 566–569.
- 44J. J. Mortensen, L. B. Hansen, K. W. Jacobsen, Phys. Rev. B 2005, 71, 035109.
- 45L.-W. Wang, J. Li, Phys. Rev. B 2004, 69, 153302.
- 46J. R. Chelikowsky, J. Phys. D 2000, 33, 33–50.
- 47P. Dufek, P. Blaha, K. Schwarz, Phys. Rev. B 1994, 50, 7279–7283.
- 48E. Engel, S. H. Vosko, Phys. Rev. B 1993, 47, 13164–13174.
- 49A. D. Becke, E. R. Johnson, J. Chem. Phys. 2006, 124, 221101.
- 50Y. Al-Douri, H. Khachai, R. Khenata, Mater. Sci. Semicond. Process. 2015, 39, 276–282.
- 51H. D. Li, Y. Wang, H. S. Hao, S. H. Liu, J. Ding, Physica A 2019, 513, 798–807.
- 52F. Liang, D. Zhang, B. L. Gao, Y. Z. Wang, Y. Gu, Mod. Phys. Lett. B 2018, 32, 1850412.
- 53Z. L. He, K. F. Chen, M. C. Lu, Q. Li, Mod. Phys. Lett. B 2018, 32, 1850333.
- 54S. Devi, B. B. Brogi, P. K. Ahluwalia, S. Chand, Physica B 2018, 539, 111–116.
- 55R. Landauer, Journal of Mathematical Physics 1996, 37, 5259–5268.
- 56J.-S. Wang, J. Wang, J. T. Lü, The European Physical Journal B 2008, 62, 381–404.
- 57P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys. Condens. Matter 2009, 21, 395502.
- 58G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15–50.
- 59P. Ordejón, E. Artacho, J. M. Soler, Phys. Rev. B 1996, 53, 10441–10444.
- 60P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, WIEN2 K, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz, Techn. Universität Wien, Austria, Wien, Austria, 2001.
- 61M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H J. J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus, W. de Jong, Comput. Phys. Commun. 2010, 181, 1477–1489.
- 62Z. Zhelev, H. Ohba, R. Bakalova, J. Am. Chem. Soc. 2006, 128, 6324–6325.
- 63H. Wada, M. Hada, M. Shiga, Y. Nakamura, J. Phys. Soc. Jpn. 1990, 59, 701–705.
- 64X. Huang, E. Lindgren, J. R. Chelikowsky, Phys. Rev. B 2005, 71, 165328.
- 65A. V. Nevidimov, V. F. Razumov, Colloid J. 2018, 80, 676–683.
- 66S. A. Kislenko, V. A. Kislenko, V. F. Razumov, Colloid J. 2015, 77, 727–732.
- 67I. Daruka, A. L. Barabási, S. J. Zhou, T. C. Germann, P. S. Lomdahl, A. R. Bishop, Phys. Rev. B 1999, 60, 2150–2153.
- 68A. Puzder, A. J. Williamson, F. Gygi, G. Galli, Phys. Rev. Lett. 2004, 92, 217401.
- 69P. Schapotschnikow, M. A. van Huis, H. W. Zandbergen, D. Vanmaekelbergh, T. J. H. Vlugt, Nano Lett. 2010, 10, 3966–3971.
- 70P. Schapotschnikow, B. Hommersom, T. J. H. Vlugt, J. Phys. Chem. C 2009, 113, 12690–12698.
- 71T. Kawamura, Y. Kangawa, K. Kakimoto, Physica Status Solidi C 2007, 4, 2289–2292.
- 72S. S. Dalgic, Chalcogenide Lett 2017, 14, 521–527.
- 73S. Plimpton, J. Comput. Phys. 1995, 117, 1–19.
- 74D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, H. J. C. Berendsen, J. Comput. Chem. 2005, 26, 1701–1718.
- 75J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, K. Schulten, J. Comput. Chem. 2005, 26, 1781–1802.
- 76I. T. Todorov, W. Smith, K. Trachenko, M. T. Dove, J. Mater. Chem. 2006, 16, 1911–1918.
- 77G. Sagarzazu, Y. Kobayashi, N. Murase, P. Yang, N. Tamai, Phys. Chem. Chem. Phys. 2011, 13, 3227–3230.
- 78G. Zlateva, Z. Zhelev, R. Bakalova, I. Kanno, Inorg. Chem. 2007, 46, 6212–6214.
- 79P. Yang, M. Ando, N. Murase, New J. Chem. 2009, 33, 561–567.
- 80W. Shockley, H. J. Queisser, J. Appl. Phys. 1961, 32, 510–519.
- 81A. Luque, A. Martí, Phys. Rev. Lett. 1997, 78, 5014–5017.
- 82M. Vörös, G. Galli, G. T. Zimanyi, ACS Nano 2015, 9, 6882–6890.
- 83C. M. Isborn, S. V. Kilina, X. Li, O. V. Prezhdo, J. Phys. Chem. C 2008, 112, 18291–18294.
- 84C. K. Dong, X. Li, J. Y. Qi, Phys. Chem. Chem. Phys. 2011, 13, 14476–14480.
- 85L. Li, Y. Kanai, J. Phys. Chem. Lett. 2016, 7, 1495–1500.
- 86J. C. Wong, L. Li, J. Phys. Chem. C 2018, 122, 29526–29536.
- 87J. Li, L.-W. Wang, Appl. Phys. Lett. 2004, 84, 3648–3650.
- 88Y. Gai, H. Peng, J. Li, J. Phys. Chem. C 2009, 113, 21506–21511.
- 89H. Peng, J. Li, S.-S. Li, J.-B. Xia, J. Phys. Chem. C 2008, 112, 13964–13969.
- 90C. K. Dong, X. Li, J. Y. Qi, J. Phys. Chem. C 2011, 115, 20307–20315.
- 91J. Zhang, X. Huang, Y. Yue, J. Wang, X. Wang, Phys. Rev. B 2011, 84, 235416.
- 92J. Zhang, Y. Wang, X. Wang, Nanoscale 2013, 5, 11598–11603.
- 93W. Xinyu, H. Yang, K. L. C. Paddy, Z. Jingchao, Nanotechnology 2017, 28, 255403.
- 94J. Zhang, Y. Hong, Y. Yue, J. Appl. Phys. 2015, 117, 134307.
- 95Y. Hong, J. Zhang, X. C. Zeng, Phys. Chem. Chem. Phys. 2016, 18, 24164–24170.
- 96H. Abdelsalam, V. A. Saroka, M. Ali, N. H. Teleb, H. Elhaes, M. A. Ibrahim, Physica E: Low-dimensional Systems and Nanostructures 2019, 108, 339–346.
- 97H. Abdelsalam, H. Elhaes, M. A. Ibrahim, Physica B: Condensed Matter 2018, 537, 77–86.
- 98L.-H. Qu, J.-M. Zhang, K.-W. Xu, Physica E: Low-dimensional Systems and Nanostructures 2013, 53, 115–119.
- 99A. A. Balandin, O. L. Lazarenkova, Appl. Phys. Lett. 2003, 82, 415–417.
- 100G. Gomez-Silva, P. A. Orellana, E. V. Anda, J. Appl. Phys. 2018, 123, 085706.
- 101M. Zhao, D. Kim, V. L. Nguyen, J. Jiang, L. Sun, Y. H. Lee, H. Yang, Nano Lett. 2019, 19, 61–68.
- 102A. Svilans, M. Josefsson, A. M. Burke, S. Fahlvik, C. Thelander, H. Linke, M. Leijnse, Phys. Rev. Lett. 2018, 121, 206801.
- 103J. B. Haskins, A. Kinaci, T. Çağin, Nanotechnology 2011, 22, 155701.
- 104J.-N. Gillet, Y. Chalopin, S. Volz, J. Heat Transfer 2009, 131, 043206–043206-10.
- 105C. Pan, M. Long, J. He, Results in Physics 2017, 7, 1487–1491.
- 106E. G. Emberly, G. Kirczenow, Phys. Rev. B 2000, 61, 5740–5750.
- 107Y. Xu, X. Chen, J.-S. Wang, B.-L. Gu, W. Duan, Phys. Rev. B 2010, 81, 195425.
- 108N. M. Dimitrijevic, Z. V. Saponjic, D. M. Bartels, M. C. Thurnauer, D. M. Tiede, T. Rajh, J. Phys. Chem. B 2003, 107, 7368–7375.
- 109A. P. Alivisatos, J. Phys. Chem. 1996, 100, 13226–13239.
- 110F. W. Wise, Acc. Chem. Res. 2000, 33, 773–780.
- 111S. L. Sewall, R. R. Cooney, K. E. H. Anderson, E. A. Dias, D. M. Sagar, P. Kambhampati, J. Chem. Phys. 2008, 129, 084701.
- 112D. Aldakov, P. Reiss, J. Phys. Chem. C 2019, DOI: 10.1021/acs.jpcc.8b12228.