A novel 19F agent for detection and quantification of human dendritic cells using magnetic resonance imaging
Fernando Bonetto
Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
Search for more papers by this authorMangala Srinivas
Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
Search for more papers by this authorArend Heerschap
Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
Search for more papers by this authorEric T. Ahrens
Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
Search for more papers by this authorCarl G. Figdor
Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
Search for more papers by this authorCorresponding Author
I. Jolanda M. de Vries
Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
Tel.: 31-3617600, Fax: 31-24-3540339
Department of Tumor Immunology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, NetherlandsSearch for more papers by this authorFernando Bonetto
Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
Search for more papers by this authorMangala Srinivas
Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
Search for more papers by this authorArend Heerschap
Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
Search for more papers by this authorEric T. Ahrens
Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
Search for more papers by this authorCarl G. Figdor
Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
Search for more papers by this authorCorresponding Author
I. Jolanda M. de Vries
Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
Tel.: 31-3617600, Fax: 31-24-3540339
Department of Tumor Immunology, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, NetherlandsSearch for more papers by this authorAbstract
Monitoring of cell therapeutics in vivo is of major importance to estimate its efficacy. Here, we present a novel intracellular label for 19F magnetic resonance imaging (MRI)-based cell tracking, which allows for noninvasive, longitudinal cell tracking without the use of radioisotopes. A key advantage of 19F MRI is that it allows for absolute quantification of cell numbers directly from the MRI data. The 19F label was tested in primary human monocyte-derived dendritic cells. These cells took up label effectively, resulting in a labeling of 1.7 ± 0.1 × 1013 19F atoms per cell, with a viability of 80 ± 6%, without the need for electroporation or transfection agents. This results in a minimum detection sensitivity of about 2,000 cells/voxel at 7 T, comparable with gadolinium-labeled cells. Comparison of the detection sensitivity of cells labeled with 19F, iron oxide and gadolinium over typical tissue background showed that unambiguous detection of the 19F-labeled cells was simpler than with the contrast agents. The effect of the 19F agent on cell function was minimal in the context of cell-based vaccines. From these data, we calculate that detection of 30,000 cells in vivo at 3 T with a reasonable signal to noise ratio for 19F images would require less than 30 min with a conventional fast spin echo sequence, given a coil similar to the one used in this study. This is well within acceptable limits for clinical studies, and thus, we conclude that 19F MRI for quantitative cell tracking in a clinical setting has great potential.
References
- 1 Akins EJ, Dubey P. Noninvasive imaging of cell-mediated therapy for treatment of cancer. J Nucl Med 2008; 49 Suppl 2: 180S–95S.
- 2 Bhagavati S. Stem cell based therapy for skeletal muscle diseases. Curr Stem Cell Res Ther 2008; 3: 219–28.
- 3 Roh JK, Jung KH, Chu K. Adult stem cell transplantation in stroke: its limitations and prospects. Curr Stem Cell Res Ther 2008; 3: 185–96.
- 4 Yamahara K, Nagaya N. Stem cell implantation for myocardial disorders. Curr Drug Deliv 2008; 5: 224–9.
- 5 Aarntzen EH, Figdor CG, Adema GJ, Punt CJ, de Vries IJ. Dendritic cell vaccination and immune monitoring. Cancer Immunol Immun 2008; 57: 1559–68.
- 6 Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007; 449: 419–26.
- 7 Lesterhuis WJ, de Vries IJ, Adema GJ, Punt CJ. Dendritic cell-based vaccines in cancer immunotherapy: an update on clinical and immunological results. Ann Oncol 2004; 15 Suppl 4: iv145–51.
- 8 Schuurhuis DH, Lesterhuis WJ, Kramer M, Looman MG, van Hout-Kuijer M, Schreibelt G, Boullart AC, Aarntzen EH, Benitez-Ribas D, Figdor CG, Punt CJ, de Vries IJ, et al. Polyinosinic polycytidylic acid prevents efficient antigen expression after mRNA electroporation of clinical grade dendritic cells. Cancer Immunol Immunother 2008; 58: 1109–15.
- 9 Schuurhuis DH, Verdijk P, Schreibelt G, Aarntzen EH, Scharenborg N, de Boer A, van de Rakt MW, Kerkhoff M, Gerritsen MJ, Eijckeler F, Bonenkamp JJ, Blokx W, et al. In situ expression of tumor antigens by messenger RNA-electroporated dendritic cells in lymph nodes of melanoma patients. Cancer Res 2009; 69: 2927–34.
- 10 Verdijk P, Aarntzen EH, Lesterhuis WJ, Boullart AC, Kok E, van Rossum MM, Strijk S, Eijckeler F, Bonenkamp JJ, Jacobs JF, Blokx W, Vankrieken JH, et al. Limited amounts of dendritic cells migrate into the T-cell area of lymph nodes but have high immune activating potential in melanoma patients. Clin Cancer Res 2009; 15: 2531–40.
- 11 Verdijk P, Aarntzen EH, Punt CJ, de Vries IJ, Figdor CG. Maximizing dendritic cell migration in cancer immunotherapy. Expert Opin Biol Ther 2008; 8: 865–74.
- 12 de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, Oyen WJ, Bonenkamp JJ, Boezeman JB, Adema GJ, Bulte JW, Scheenen TW, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 2005; 23: 1407–13.
- 13 Srinivas M, Heerschap A, Ahrens ET, Figdor CG, de Vries IJM. 19F MRI for quantitative in vivo cell tracking. Trends Biotechnol 2010; 28: 363–70.
- 14 Sengar RS, Spokauskiene L, Steed DP, Griffin P, Arbujas N, Chambers WH, Wiener EC. Magnetic resonance imaging-guided adoptive cellular immunotherapy of central nervous system tumors with a T1 contrast agent. Magn Reson Med 2009; 62: 599–606.
- 15 Liu W, Frank JA. Detection and quantification of magnetically labeled cells by cellular MRI. Eur J Radiol 2009; 70: 258–64.
- 16 Ahrens ET, Flores R, Xu H, Morel PA. In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 2005; 23: 983–7.
- 17 Ruiz-Cabello J, Walczak P, Kedziorek DA, Chacko VP, Schmieder AH, Wickline SA, Lanza GM, Bulte JW. In vivo "hot spot" MR imaging of neural stem cells using fluorinated nanoparticles. Magn Reson Med 2008; 60: 1506–11.
- 18 Srinivas M, Morel PA, Ernst LA, Laidlaw DH, Ahrens ET. Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med 2007; 58: 725–34.
- 19 Srinivas M, Turner MS, Janjic JM, Morel PA, Laidlaw DH, Ahrens ET. In vivo cytometry of antigen-specific t cells using (19)F MRI. Magn Reson Med 2009; 62: 747–53.
- 20 Boullart AC, Aarntzen EH, Verdijk P, Jacobs JF, Schuurhuis DH, Benitez-Ribas D, Schreibelt G, van de Rakt MW, Scharenborg NM, de Boer A, Kramer M, Figdor CG, et al. Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol Immunother 2008; 57: 1589–97.
- 21 Helfer BM, Melson AD, Janjic JM, Gil RR, Kalinski P, de Vries J, Ahrens ET, Mailliard RB. Functional assessment of human dendritic cells labeledffor in vivo 19F magnetic resonance imaging cell tracking. Application of a novel 19F tracer agent for in vivo tracking of human dendritic cell vaccines. Cytotherapy 2010; 12: 238–50.
- 22 Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med 1995; 34: 910–4.
- 23 Janjic JM, Srinivas M, Kadayakkara DK, Ahrens ET. Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. J Am Chem Soc 2008; 130: 2832–41.
- 24 Verdijk P, Scheenen TW, Lesterhuis WJ, Gambarota G, Veltien AA, Walczak P, Scharenborg NM, Bulte JW, Punt CJ, Heerschap A, Figdor CG, de Vries IJ. Sensitivity of magnetic resonance imaging of dendritic cells for in vivo tracking of cellular cancer vaccines. Int J Cancer 2007; 120: 978–84.
- 25 Foster-Gareau P, Heyn C, Alejski A, Rutt BK. Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn Reson Med 2003; 49: 968–71.
- 26 Heyn C, Bowen CV, Rutt BK, Foster PJ. Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med 2005; 53: 312–20.
- 27 Hsiao JK, Tai MF, Chu HH, Chen ST, Li H, Lai DM, Hsieh ST, Wang JL, Liu HM. Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magn Reson Med 2007; 58: 717–24.
- 28 Cheung JS, Chow AM, Hui ES, Yang J, Tse HF, Wu EX. Cell number quantification of USPIO-labeled stem cells by MRI: an in vitro study. Conf Proc IEEE Eng Med Biol Soc 2006; 1: 476–9.
- 29 Liu W, Dahnke H, Jordan EK, Schaeffter T, Frank JA. In vivo MRI using positive-contrast techniques in detection of cells labeled with superparamagnetic iron oxide nanoparticles. NMR Biomed 2008; 21: 242–50.
- 30 Seppenwoolde JH, Viergever MA, Bakker CJ. Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn Reson Med 2003; 50: 784–90.
- 31 Seppenwoolde JH, Vincken KL, Bakker CJ. White-marker imaging--separating magnetic susceptibility effects from partial volume effects. Magn Reson Med 2007; 58: 605–9.
- 32 Rad AM, Arbab AS, Iskander AS, Jiang Q, Soltanian-Zadeh H. Quantification of superparamagnetic iron oxide (SPIO)-labeled cells using MRI. J Magn Reson Imaging 2007; 26: 366–74.
- 33 De Vries IJ, Krooshoop DJ, Scharenborg NM, Lesterhuis WJ, Diepstra JH, Van Muijen GN, Strijk SP, Ruers TJ, Boerman OC, Oyen WJ, Adema GJ, Punt CJ, et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 2003; 63: 12–17.
- 34 Dietrich O. Single-shot pulse sequences. In: S Schoemberg, O Dietrich, M Reiser, eds. Parallel imaging in clinical MR applicationsed. Berlin, Germany: Springer Berlin Heidelberg, 2007. 119–26.
- 35 Klomp D, van Laarhoven H, Scheenen T, Kamm Y, Heerschap A. Quantitative 19F MR spectroscopy at 3 T to detect heterogeneous capecitabine metabolism in human liver. NMR Biomed 2007; 20: 485–92.
- 36 Li CW, Negendank WG, Padavic-Shaller KA, O'Dwyer PJ, Murphy-Boesch J, Brown TR. Quantitation of 5- fluorouracil catabolism in human liver in vivo by three-dimensional localized 19F magnetic resonance spectroscopy. Clin Cancer Res 1996; 2: 339–45.