Hospicells (ascites-derived stromal cells) promote tumorigenicity and angiogenesis
Marlene Pasquet
EA3035, Institut Claudius Regaud, University Toulouse III, Faculté des Sciences Pharmaceutiques, Toulouse, F - 31062
Search for more papers by this authorEliane Mery
EA3035, Institut Claudius Regaud, University Toulouse III, Faculté des Sciences Pharmaceutiques, Toulouse, F - 31062
Search for more papers by this authorArash Rafii
EA3035, Institut Claudius Regaud, University Toulouse III, Faculté des Sciences Pharmaceutiques, Toulouse, F - 31062
INSERM UMR 736 Paris F-75
Search for more papers by this authorIsabelle Hennebelle
EA3035, Institut Claudius Regaud, University Toulouse III, Faculté des Sciences Pharmaceutiques, Toulouse, F - 31062
Search for more papers by this authorPhilippe Bourin
Service d'Ingénierie Cellulaire, Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, F -31300
Search for more papers by this authorBen Allal
EA3035, Institut Claudius Regaud, University Toulouse III, Faculté des Sciences Pharmaceutiques, Toulouse, F - 31062
Search for more papers by this authorCorresponding Author
Bettina Couderc
EA3035, Institut Claudius Regaud, University Toulouse III, Faculté des Sciences Pharmaceutiques, Toulouse, F - 31062
Fax: 33-5-61-42-46-31
Institut Claudius Regaud, 20-24 rue du pont St Pierre, 31052 Toulouse, FranceSearch for more papers by this authorMarlene Pasquet
EA3035, Institut Claudius Regaud, University Toulouse III, Faculté des Sciences Pharmaceutiques, Toulouse, F - 31062
Search for more papers by this authorEliane Mery
EA3035, Institut Claudius Regaud, University Toulouse III, Faculté des Sciences Pharmaceutiques, Toulouse, F - 31062
Search for more papers by this authorArash Rafii
EA3035, Institut Claudius Regaud, University Toulouse III, Faculté des Sciences Pharmaceutiques, Toulouse, F - 31062
INSERM UMR 736 Paris F-75
Search for more papers by this authorIsabelle Hennebelle
EA3035, Institut Claudius Regaud, University Toulouse III, Faculté des Sciences Pharmaceutiques, Toulouse, F - 31062
Search for more papers by this authorPhilippe Bourin
Service d'Ingénierie Cellulaire, Etablissement Français du Sang Pyrénées-Méditerranée, Toulouse, F -31300
Search for more papers by this authorBen Allal
EA3035, Institut Claudius Regaud, University Toulouse III, Faculté des Sciences Pharmaceutiques, Toulouse, F - 31062
Search for more papers by this authorCorresponding Author
Bettina Couderc
EA3035, Institut Claudius Regaud, University Toulouse III, Faculté des Sciences Pharmaceutiques, Toulouse, F - 31062
Fax: 33-5-61-42-46-31
Institut Claudius Regaud, 20-24 rue du pont St Pierre, 31052 Toulouse, FranceSearch for more papers by this authorAbstract
The microenvironment is known to play a dominant role in cancer progression. Cells closely associated with tumoral cells, named hospicells, have been recently isolated from the ascites of ovarian cancer patients. Whilst these cells present no specific markers from known cell lineages, they do share some homology with bone marrow-derived or adipose tissue-derived human mesenchymal stem cells (CD9, CD10, CD29, CD146, CD166, HLA-1). We studied the role of hospicells in ovarian carcinoma progression. In vitro, these cells had no effect on the growth of human ovarian carcinoma cell lines OVCAR-3, SKOV-1 and IGROV-1. In vivo, their co-injection with adenocarcinoma cells enhanced tumor growth whatever the tumor model used (subcutaneous and intraperitoneally established xenografts in athymic mice). In addition, their injection increased the development of ascites in tumor-bearing mice. Fluorescent macroscopy revealed an association between hospicells and ovarian adenocarcinoma cells within the tumor mass. Tumors obtained by coinjection of hospicells and human ovarian adenocarcinoma cells presented an increased microvascularization indicating that the hospicells could promote tumorigenicity of ovarian tumor cells in vivovia their action on angiogenesis. This effect on angiogenesis could be attributed to the increased HIF1α and VEGF expression associated with the presence of the hospicells. Collectively, these data indicate a role for these ascite-derived stromal cells in promoting tumor growth by increasing angiogenesis.
References
- 1 Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.
- 2 Gupta GP, Massague J. Cancer metastasis: building a framework. Cell 2006; 127: 679–95.
- 3 Wels J, Kaplan RN, Rafii S, Lyden D. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev 2008; 22: 559–74.
- 4 Bhowmick NA, Neilson EG, Moses HL. Stromal fibroblasts in cancer initiation and progression. Nature 2004; 432: 332–7.
- 5 Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–17.
- 6 Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, Zhu Z, Hicklin D, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438: 820–7.
- 7 Cannistra SA. Cancer of the ovary. N Engl J Med 2004; 351: 2519–29.
- 8 Burleson KM, Casey RC, Skubitz KM, Pambuccian SE, Oegema TR,Jr, Skubitz AP. Ovarian carcinoma ascites spheroids adhere to extracellular matrix components and mesothelial cell monolayers. Gynecol Oncol 2004; 93: 170–81.
- 9 Rafii A, Mirshahi P, Poupot M, Faussat AM, Simon A, Ducros E, Mery E, Couderc B, Lis R, Capdet J, Bergalet J, Querleu D, et al. Oncologic trogocytosis of an original stromal cells induces chemoresistance of ovarian tumours. PLoS ONE 2008; 3: e3894.
- 10 Lazennec G, Jorgensen C. Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells 2008; 26: 1387–94.
- 11 Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM, Barry FP, O'Brien T, Kerin MJ. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007; 13: 5020–7.
- 12 Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96: 1593–603.
- 13 Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 2006; 24: 986–91.
- 14 Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M, Mayer-Kuckuk P, Glod J, Banerjee D. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 2007; 25: 520–8.
- 15 Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557–63.
- 16 Chen J, Baydoun AR, Xu R, Deng L, Liu X, Zhu W, Shi L, Cong X, Hu S, Chen X. Lysophosphatidic acid protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Stem Cells 2008; 26: 135–45.
- 17 Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 2007; 67: 6304–13.
- 18 Schaffler A, Buchler C. Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells 2007; 25: 818–27.
- 19 Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S, Danho C, Laharrague P, Klein B, Reme T, Bourin P. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 2007; 21: 1079–88.
- 20
Lortal B,
Gross F,
Peron JM,
Penary M,
Berg D,
Hennebelle I,
Favre G,
Couderc B.
Preclinical study of an ex vivo gene therapy protocol for hepatocarcinoma.
Cancer Gene Ther
2009;
16:
329–37.
10.1038/cgt.2008.88 Google Scholar
- 21 Guichard S, Montazeri A, Chatelut E, Hennebelle I, Bugat R, Canal P. Schedule-dependent activity of topotecan in OVCAR-3 ovarian carcinoma xenograft: pharmacokinetic and pharmacodynamic evaluation. Clin Cancer Res 2001; 7: 3222–8.
- 22 Couderc B, Pradines A, Rafii A, Golzio M, Deviers A, Allal C, Berg D, Penary M, Teissie J, Favre G. In vivo restoration of RhoB expression leads to ovarian tumor regression. Cancer Gene Ther 2008; 15: 456–64.
- 23 Beckermann BM, Kallifatidis G, Groth A, Frommhold D, Apel A, Mattern J, Salnikov AV, Moldenhauer G, Wagner W, Diehlmann A, Saffrich R, Schubert M, et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br J Cancer 2008; 99: 622–31.
- 24
Ozbudak IH,
Karaveli S,
Simsek T,
Erdogan G,
Pestereli E.
Neoangiogenesis and expression of hypoxia-inducible factor 1alpha, vascular endothelial growth factor, and glucose transporter-1 in endometrioid type endometrium adenocarcinomas.
Gynecol Oncol
2008;
108:
603–8.
10.1016/j.ygyno.2007.11.028 Google Scholar
- 25 Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 2008; 68: 4311–20.
- 26 Colombo N, Van Gorp T, Parma G, Amant F, Gatta G, Sessa C, Vergote I. Ovarian cancer. Crit Rev Oncol Hematol 2006; 60: 159–79.
- 27 Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Cho M, Suh DS, Yoon MS, Chang CL, Jung JS, Kim JH. Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. Stem Cells 2008; 26: 789–97.
- 28 De Wever O, Demetter P, Mareel M, Bracke M. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 2008; 123: 2229–38.
- 29 Granot D, Addadi Y, Kalchenko V, Harmelin A, Kunz-Schughart LA, Neeman M. In vivo imaging of the systemic recruitment of fibroblasts to the angiogenic rim of ovarian carcinoma tumors. Cancer Res 2007; 67: 9180–9.
- 30 Wang E, Ngalame Y, Panelli MC, Nguyen-Jackson H, Deavers M, Mueller P, Hu W, Savary CA, Kobayashi R, Freedman RS, Marincola FM. Peritoneal and subperitoneal stroma may facilitate regional spread of ovarian cancer. Clin Cancer Res 2005; 11: 113–22.
- 31 Zhang W. Mesenchymal stem cells in cancer: friends or foes. Cancer Biol Ther 2008; 7: 252–4.
- 32 Mesiano S, Ferrara N, Jaffe RB. Role of vascular endothelial growth factor in ovarian cancer: inhibition of ascites formation by immunoneutralization. Am J Pathol 1998; 153: 1249–56.
- 33 Nilsson MB, Langley RR, Fidler IJ. Interleukin-6, secreted by human ovarian carcinoma cells, is a potent proangiogenic cytokine. Cancer Res 2005; 65: 10794–800.
- 34 Mizukami Y, Jo WS, Duerr EM, Gala M, Li J, Zhang X, Zimmer MA, Iliopoulos O, Zukerberg LR, Kohgo Y, Lynch MP, Rueda BR, et al. Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 2005; 11: 992–7.
- 35 Merritt WM, Lin YG, Spannuth WA, Fletcher MS, Kamat AA, Han LY, Landen CN, Jennings N, De Geest K, Langley RR, Villares G, Sanguino A, et al. Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth. J Natl Cancer Inst 2008; 100: 359–72.
- 36 Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–32.
- 37 Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 2002; 8: S62–S67.
- 38 Wong C, Wellman TL, Lounsbury KM. VEGF and HIF-1alpha expression are increased in advanced stages of epithelial ovarian cancer. Gynecol Oncol 2003; 91: 513–17.
- 39 Chi JT, Wang Z, Nuyten DS, Rodriguez EH, Schaner ME, Salim A, Wang Y, Kristensen GB, Helland A, Borresen-Dale AL, Giaccia A, Longaker MT, et al. Gene expression programs in response to hypoxia: cell type specificity and prognostic significance in human cancers. PLoS Med 2006; 3: e47.
- 40 Chen X, Lin X, Zhao J, Shi W, Zhang H, Wang Y, Kan B, Du L, Wang B, Wei Y, Liu Y, Zhao X. A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther 2008; 16: 749–56.