Small molecule antagonists of Tcf4/β-catenin complex inhibit the growth of HCC cells in vitro and in vivo
Wei Wei
Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Stanford, CA
Search for more papers by this authorCorresponding Author
Mei-Sze Chua
Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Stanford, CA
Department of Surgery and Asian Liver Center, 300 Pasteur Drive, H3680, Stanford, CA 94305-5655, USASearch for more papers by this authorSusan Grepper
CellzDirect/Invitrogen, 4301 Emperor Blvd, Durham, NC
Search for more papers by this authorSamuel So
Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Stanford, CA
Search for more papers by this authorWei Wei
Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Stanford, CA
Search for more papers by this authorCorresponding Author
Mei-Sze Chua
Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Stanford, CA
Department of Surgery and Asian Liver Center, 300 Pasteur Drive, H3680, Stanford, CA 94305-5655, USASearch for more papers by this authorSusan Grepper
CellzDirect/Invitrogen, 4301 Emperor Blvd, Durham, NC
Search for more papers by this authorSamuel So
Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Stanford, CA
Search for more papers by this authorAbstract
Hepatocellular carcinoma (HCC) is the 5th most common cancer worldwide. It is intrinsically resistant toward standard chemotherapy, making it imperative to develop novel selective chemotherapeutic agents. The Wnt/β-catenin pathway plays critical roles in development and oncogenesis, and is dysregulated in HCC. Our study aims to evaluate the activity of 3 small molecule antagonists of the Tcf4/β-catenin complex (PKF118-310, PKF115-584 and CGP049090) on HCC cell lines in vitro and in vivo. All 3 chemicals displayed dose-dependent cytotoxicity in vitro against all 3 HCC cell lines (HepG2, Hep40 and Huh7), but were at least 10 times less cytotoxic to normal hepatocytes (from 3 donors) by using ATP assay. In HepG2 and Huh7 cells, treatment with the antagonists decreased Tcf4/β-catenin binding capability and transcriptional activity, associated with downregulation of the endogenous Tcf4/ β-catenin target genes c-Myc, cyclin D1 and survivin. In HepG2 and Huh7 cells, treatment with the antagonists induced apoptosis and cell cycle arrest at the G1/S phase. All antagonists suppressed in vivo tumor growth in a HepG2 xenograft model, associated with apoptosis and reduced c-Myc, cyclin D1 and survivin expressions. Our results suggest that these 3 antagonists of the Tcf4/β-catenin complex are potential chemotherapeutic agents which may offer a pathway specific option for the clinical management of HCC.
References
- 1
Parkin DM,
Pisani P,
Ferlay J.
Estimates of the worldwide incidence of 25 major cancers in 1990.
Int J Cancer
1999;
80:
827–841.
10.1002/(SICI)1097-0215(19990315)80:6<827::AID-IJC6>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 2 Ercolani G, Grazi GL, Ravaioli M, Del Gaudio M, Gardini A, Cescon M, Varotti G, Cetta F, Cavallari A. Liver resection for hepatocellular carcinoma on cirrhosis: univariate and multivariate analysis of risk factors for intrahepatic recurrence. Ann Surg 2003; 237: 536–543.
- 3 Takayama T, Sekine T, Makuuchi M, Yamasaki S, Kosuge T, Yamamoto J, Shimada K, Sakamoto M, Hirohashi S, Ohashi Y, Kakizoe T. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: A randomized trial. Lancet 2000; 356: 802–807.
- 4 Tang ZY, Ye SL, Liu YK, Qin LX, Sun HC, Ye QH, Wang L, Zhou J, Qiu SJ, Li Y, Ji XN, Liu H, et al. A decade's studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol 2004; 130: 187–96.
- 5 Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003; 362: 1907–1917.
- 6 Oie S, Ono M, Fukushima H, Hosoi F, Yano H, Maruyama Y, Kojiro M, Terada T, Hirano K, Kuwano M, Yamada Y. Alteration of dihydropyrimidine dehydrogenase expression by IFN-alpha affects the antiproliferative effects of 5-fluorouracil in human hepatocellular carcinoma cells. Mol Cancer Ther 2007; 6: 2310–2318.
- 7
Chung YH,
Song IH,
Song BC,
Lee GC,
Koh MS,
Yoon HK,
Lee YS,
Sung KB,
Suh DJ.
Combined therapy consisting of intraarterial cisplatin infusion and systemic interferon-alpha for hepatocellular carcinoma patients with major portal vein thrombosis or distant metastasis.
Cancer
2000;
88:
1986–1991.
10.1002/(SICI)1097-0142(20000501)88:9<1986::AID-CNCR2>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 8 Bild AH, Yao G, Chang JT, Wang Q, Potti A. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006; 439: 353–357.
- 9 Devereux TR, Stern MC, Flake GP, Yu MC, Zhang ZQ, London SJ, Taylor JA. CTNNB1 mutations and beta-catenin protein accumulation in human hepatocellular carcinomas associated with high exposure to aflatoxin B1. Mol Carcinog 2001; 31: 68–73.
- 10 Hsu HC, Jeng YM, Mao TL, Chu JS, Lai PL, Peng SY. Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 2000; 157: 763–770.
- 11
Wong CM,
Fan ST,
Ng IOL.
β-catenin mutation and over expression in hepatocellular carcinoma.
Cancer
2001;
92:
136–145.
10.1002/1097-0142(20010701)92:1<136::AID-CNCR1301>3.0.CO;2-R CAS PubMed Web of Science® Google Scholar
- 12 Thompson MD, Monga SPS. WNT/beta-catenin signaling in liver health and disease. Hepatology 2007; 45: 1298–1305.
- 13 Lee HC, Kim M, Wands JR. Wnt/frizzled signaling in hepatocellular carcinoma. Front Biosci 2006; 11: 1901–1915.
- 14 Takigawa Y, Brown AM. Wnt signaling in liver cancer. Curr Drug Targets 2008; 9: 1013–1024.
- 15 Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 2004; 5: 691–701.
- 16 Coleman WB. Mechanisms of human hepatocarcinogenesis. Curr Mol Med 2003; 3: 573–588.
- 17 Endo K, Ueda T, Ueyama J, Ohta T, Terada T. Immunoreactive E-cadherin, alpha-catenin, beta-catenin, and gamma-catenin proteins in hepatocellular carcinoma: Relationships with tumor grade, clinicopathologic parameters, and patients' survival. Hum Pathol 2000; 31: 558–565.
- 18 Inagawa S, Itabashi M, Adachi S, Kawamoto T, Hori M, Shimazaki J, Yoshimi F, Fukao K. Expression and prognostic roles of beta-catenin in hepatocellular carcinoma: Correlation with tumor progression and postoperative survival. Clin Cancer Res 2002; 8: 450–456.
- 19 Huang H, Fujii H, Sankila A. β-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection. Am J Pathol 1999; 155: 1795–1801.
- 20 Cieply B, Zeng G, Proverbs-Singh T, Geller DA, Monga SP. Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene. Hepatology 2009; 49: 821–831.
- 21 Sparks AB, Morin PJ, Vogelstein B Kinzler KW. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 1998; 58: 1130–1134.
- 22 Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P. Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 1997; 275: 1790–1792.
- 23 Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B, Kinzler KW. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997; 275: 1787–1790.
- 24 You L, He B, Xu Z, Uematsu K, Mazieres J, Fujii N, Mikami I, Reguart N, McIntosh JK, Kashani-Sabet M, McCormick F, Jablons DM. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res 2004; 64: 5385–5389.
- 25 Avila MA, Berasain C, Sangro B, Prieto J. New therapies for hepatocellular carcinoma. Oncogene 2006; 25: 3866–3884.
- 26 Lepourcelet M, Chen YN, France DS. Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex. Cancer Cell 2004; 5: 91–102.
- 27 Wakita K, Tetsu O, McCormick F. A mammalian two-hybrid system for adenomatous polyposis coli-mutated colon cancer therapeutics. Cancer Res 2001; 61: 854–858.
- 28 Sukhdeo K, Mani M, Zhang Y, Dutta J, Yasui H, Rooney MD, Carrasco DE, Zheng M, He H, Tai YT, Mitsiades C, Anderson KC, et al. Targeting the β-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc Natl Acad Sci USA 2007; 104: 7516–7521.
- 29 De La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C. Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci USA 1995; 95: 8847–8851.
- 30 Liu Y, Chen C, Wu H, Chan D, Yu J, Yang A. Telomerase and c-myc expression in hepatocellular carcinomas. Eur J Surg Oncol 2004; 30: 384–390.
- 31 Masaki T, Shiratori Y, Rengifo W, Igarashi K, Yamagata M, Kurokohchi K, Uchida N, Miyauchi Y, Yoshiji H, Watanabe S, Omata M, Kuriyama S. Cyclins and cyclin-dependent kinases: comparative study of hepatocellular carcinoma versus cirrhosis. Hepatology 2003; 37: 534–543.
- 32 Ito T, Shiraki K, Sugimoto K, Yamanaka T, Fujikawa K, Ito M, Takase K, Moriyama M, Kawano H, Hayashida M, Nakano T, Suzuki A. Survivin promotes cell proliferation in human hepatocellular carcinoma. Hepatology 2000; 31: 1080–1085.
- 33 Thompson MD, Monga SPS. WNT/β-catenin signaling in liver health and disease. Hepatology 2007; 45: 1298–1305.
- 34 Roberts LR, Gores GJ. Emerging drugs for hepatocellular carcinoma. Expert Opin Emerg Drugs 2006; 11: 469–487.
- 35 Yamashita T, Budhu A, Forgues M, Wang XW. Activation of hepatic stem cell marker EpCAM by Wnt-β-catenin signaling in hepatocellular carcinoma. Cancer Res 2007; 67: 10831–10839.
- 36 Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 1993; 7: 812–821.
- 37 Sandgren EP, Quaife CJ, Pinkert CA, Palmiter RD, Brinster L. Oncogene-induced liver neoplasia in transgenic mice. Oncogene 1989; 4: 715–724.
- 38 Murakami H, Sanderson ND, Nagy P, Marino PA, Merlino G, Thorgeirsson SS. Transgenic mouse model for synergistic effects of nuclear oncogenes and growth factors in tumorigenesis: interaction of c-myc and transforming growth factor alpha in hepatic oncogenesis. Cancer Res 1993; 53: 1719–1723.
- 39 Wu Y, Renard C-A, Apiou F, Huerre M, Tiollais P. Recurrent allelic deletions at mouse chromosomes 4 and 14 in. Myc-induced liver tumors. Oncogene 2002; 21: 1518–1526.
- 40 Shachaf CM, Kopelman A, Arvanitis C, Karlsson A, Beer S, Mandl S. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 2004; 431: 1112–1117.
- 41 Altieri DC. Validating survivin as a cancer therapeutic target. Nat Rev Cancer 2003; 3: 45–64.