αvβ3 Integrin-targeting radionuclide therapy and imaging with monomeric RGD peptide
Corresponding Author
Mitsuyoshi Yoshimoto
Division of Health Sciences, Graduate School of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Japan
Fax: +81-76-234-4366.
Division of Health Sciences, Graduate School of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, JapanSearch for more papers by this authorKazuma Ogawa
Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, Japan
Search for more papers by this authorKohshin Washiyama
Division of Health Sciences, Graduate School of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Japan
Search for more papers by this authorNaoto Shikano
Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, Japan
Search for more papers by this authorHirofumi Mori
Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, Japan
Search for more papers by this authorRyohei Amano
Division of Health Sciences, Graduate School of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Japan
Search for more papers by this authorKeiichi Kawai
Division of Health Sciences, Graduate School of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Japan
Biomedical Imaging Research Center, Fukui University, 23-3 Shimoaizuki, Matsuoka-cho, Fukui, Japan
Search for more papers by this authorCorresponding Author
Mitsuyoshi Yoshimoto
Division of Health Sciences, Graduate School of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Japan
Fax: +81-76-234-4366.
Division of Health Sciences, Graduate School of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa 920-0942, JapanSearch for more papers by this authorKazuma Ogawa
Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, Japan
Search for more papers by this authorKohshin Washiyama
Division of Health Sciences, Graduate School of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Japan
Search for more papers by this authorNaoto Shikano
Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki, Japan
Search for more papers by this authorHirofumi Mori
Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, Japan
Search for more papers by this authorRyohei Amano
Division of Health Sciences, Graduate School of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Japan
Search for more papers by this authorKeiichi Kawai
Division of Health Sciences, Graduate School of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Japan
Biomedical Imaging Research Center, Fukui University, 23-3 Shimoaizuki, Matsuoka-cho, Fukui, Japan
Search for more papers by this authorAbstract
The αvβ3 integrin plays a pivotal role in angiogenesis and tumor metastasis. Angiogenic blood vessels overexpress αvβ3 integrin, as in tumor neovascularization, and αvβ3 integrin expression in other microvascular beds and organs is limited. Therefore, αvβ3 integrin is a suitable receptor for tumor-targeting imaging and therapy. Recently, tetrameric and dimeric RGD peptides have been developed to enhance specificity to αvβ3 integrin. In comparison to the corresponding monomeric peptide, however, these peptides show high levels of accumulation in kidney and liver. The purpose of this study is to evaluate tumor-targeting properties and the therapeutic potential of 111In- and 90Y-labeled monomeric RGD peptides in BALB/c nude mice with SKOV-3 human ovarian carcinoma tumors. DOTA-c(RGDfK) was labeled with 111In or 90Y and purified by HPLC. A biodistribution study and scintigraphic images revealed the specific uptake to αvβ3 integrin and the rapid clearance from normal tissues. These peptides were renally excreted. At 10 min after injection of tracers, 111In-DOTA-c(RGDfK) and 90Y-DOTA-c(RGDfK) showed high uptake in tumors (7.3 ± 0.6% ID/g and 4.6 ± 0.8% ID/g, respectively) and gradually decreased over time (2.3 ± 0.4% ID/g and 1.5 ± 0.5% ID/g at 24 hr, respectively). High tumor-to-blood and -muscle ratios were obtained from these peptides. In radionuclide therapeutic study, multiple-dose administration of 90Y-DOTA-c(RGDfK) (3 × 11.1 MBq) suppressed tumor growth in comparison to the control group and a single-dose administration (11.1 MBq). Monomeric RGD peptides, 111In-DOTA-c(RGDfK) and 90Y-DOTA-c(RGDfK), could be promising tracers for αvβ3 integrin-targeting imaging and radiotherapy. © 2008 Wiley-Liss, Inc.
References
- 1 Brooks PC. Role of integrins in angiogenesis. Eur J Cancer A 1996; 32: 2423–9.
- 2 Brooks PC,Clark RA,Cheresh DA. Requirement of vascular integrin αvβ3 for angiogenesis. Science 1994; 264: 569–71.
- 3 Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol 1992; 3: 65–71.
- 4 Meyer A,Auernheimer J,Modlinger A,Kessler H. Targeting RGD recognizing integrins: drug development, biomaterial research, tumor imaging and targeting. Curr Pharm Des 2006; 12: 2723–47.
- 5 Allman R,Cowburn P,Mason M. In vitro and in vivo effects of a cyclic peptide with affinity for the αvβ3 integrin in human melanoma cells. Eur J Cancer 2000; 36: 410–22.
- 6 Brooks PC,Stromblad S,Klemke R,Visscher D,Sarkar FH,Cheresh DA. Antiintegrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J Clin Invest 1995; 96: 1815–22.
- 7 Felding-Habermann B,O'Toole TE,Smith JW,Fransvea E,Ruggeri ZM,Ginsberg MH,Hughes PE,Pampori N,Shattil SJ,Saven A,Mueller BM. Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci USA 2001; 98: 1853–8.
- 8 Nip J,Shibata H,Loskutoff DJ,Cheresh DA,Brodt P. Human melanoma cells derived from lymphatic metastases use integrin αvβ3 to adhere to lymph node vitronectin. J Clin Invest 1992; 90: 1406–13.
- 9 Reinmuth N,Liu W,Ahmad SA,Fan F,Stoeltzing O,Parikh AA,Bucana CD,Gallick GE,Nickols MA,Westlin WF,Ellis LM. αvβ3 integrin antagonist S247 decreases colon cancer metastasis and angiogenesis and improves survival in mice. Cancer Res 2003; 63: 2079–87.
- 10 Haubner R. αvβ3-integrin imaging: a new approach to characterise angiogenesis? Eur J Nucl Med Mol Imaging 2006; 33( Suppl 1): 54–63.
- 11 Li ZB,Cai W,Cao Q,Chen K,Wu Z,He L,Chen X. 64Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor αvβ3 integrin expression. J Nucl Med 2007; 48: 1162–71.
- 12 Janssen M,Oyen WJ,Massuger LF,Frielink C,Dijkgraaf I,Edwards DS,Radjopadhye M,Corstens FH,Boerman OC. Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother Radiopharm 2002; 17: 641–6.
- 13 Cannistra SA,Ottensmeier C,Niloff J,Orta B,DiCarlo J. Expression and function of β1 and αvβ3 integrins in ovarian cancer. Gynecol Oncol 1995; 58: 216–25.
- 14 Sgouros G. Dosimetry of internal emitters. J Nucl Med 2005; 46( Suppl 1): 18S–27S.
- 15 Chen X,Park R,Shahinian AH,Bading JR,Conti PS. Pharmacokinetics and tumor retention of 125I-labeled RGD peptide are improved by PEGylation. Nucl Med Biol 2004; 31: 11–9.
- 16 Haubner R,Wester HJ,Reuning U,Senekowitsch-Schmidtke R,Diefenbach B,Kessler H,Stocklin G,Schwaiger M. Radiolabeled αvβ3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999; 40: 1061–71.
- 17 Haubner R,Wester HJ,Burkhart F,Senekowitsch-Schmidtke R,Weber W,Goodman SL,Kessler H,Schwaiger M. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 2001; 42: 326–36.
- 18 Janssen ML,Oyen WJ,Dijkgraaf I,Massuger LF,Frielink C,Edwards DS,Rajopadhye M,Boonstra H,Corstens FH,Boerman OC. Tumor targeting with radiolabeled αvβ3 integrin binding peptides in a nude mouse model. Cancer Res 2002; 62: 6146–51.
- 19 McDevitt MR,Sgouros G,Finn RD,Humm JL,Jurcic JG,Larson SM,Scheinberg DA. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med 1998; 25: 1341–51.
- 20 Norenberg JP,Krenning BJ,Konings IR,Kusewitt DF,Nayak TK,Anderson TL,de Jong M,Garmestani K,Brechbiel MW,Kvols LK. 213Bi-[DOTA0. Tyr3]octreotide peptide receptor radionuclide therapy of pancreatic tumors in a preclinical animal model. Clin Cancer Res 2006; 12: 897–903.
- 21 Washiyama K,Amano R,Sasaki J,Kinuya S,Tonami N,Shiokawa Y,Mitsugashira T. 227Th-EDTMP: a potential therapeutic agent for bone metastasis. Nucl Med Biol 2004; 31: 901–8.
- 22 van Hagen PM,Breeman WA,Bernard HF,Schaar M,Mooij CM,Srinivasan A,Schmidt MA,Krenning EP,de Jong M. Evaluation of a radiolabelled cyclic DTPA-RGD analogue for tumour imaging and radionuclide therapy. Int J Cancer 2000; 90: 186–98.
- 23 Chen X,Park R,Tohme M,Shahinian AH,Bading JR,Conti PS. MicroPET and autoradiographic imaging of breast cancer αv-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem 2004; 15: 41–9.
- 24 Singh B,Fu C, Bhattacharya J Vascular expression of the αvβ3-integrin in lung and other organs. Am J Physiol Lung Cell Mol Physiol 2000; 278: L217–L226.
- 25 Teitelbaum SL. Bone resorption by osteoclasts. Science 2000; 289: 1504–8.
- 26 Grzesik WJ,Robey PG. Bone matrix RGD glycoproteins: immunolocalization and interaction with human primary osteoblastic bone cells in vitro. J Bone Miner Res 1994; 9: 487–96.
- 27 Hughes DE,Salter DM,Dedhar S,Simpson R. Integrin expression in human bone. J Bone Miner Res 1993; 8: 527–33.
- 28 Bloechl S,Beck R,Seidl C,Morgenstern A,Schwaiger M,Senekowitsch-Schmidtke R. Fractionated locoregional low-dose radioimmunotherapy improves survival in a mouse model of diffuse-type gastric cancer using a 213Bi-conjugated monoclonal antibody. Clin Cancer Res 2005; 11: 7070s–4s.
- 29 DeNardo GL,Schlom J,Buchsbaum DJ,Meredith RF,O'Donoghue JA,Sgouros G,Humm JL,DeNardo SJ. Rationales, evidence, and design considerations for fractionated radioimmunotherapy. Cancer 2002; 94: 1332–48.
- 30 Goel A,Augustine S,Baranowska-Kortylewicz J,Colcher D,Booth BJ,Pavlinkova G,Tempero M,Batra SK. Single-Dose versus fractionated radioimmunotherapy of human colon carcinoma xenografts using 131I-labeled multivalent CC49 single-chain fvs. Clin Cancer Res 2001; 7: 175–84.
- 31 Anderson CJ,Jones LA,Bass LA,Sherman EL,McCarthy DW,Cutler PD,Lanahan MV,Cristel ME,Lewis JS,Schwarz SW. Radiotherapy, toxicity and dosimetry of copper-64-TETA-octreotide in tumor-bearing rats. J Nucl Med 1998; 39: 1944–51.
- 32 Forster GJ,Engelbach MJ,Brockmann JJ,Reber HJ,Buchholz HG,Macke HR,Rosch FR,Herzog HR,Bartenstein PR. Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: comparison of 86Y-DOTATOC and 111In-DTPA-octreotide. Eur J Nucl Med 2001; 28: 1743–50.
- 33 Jamar F,Barone R,Mathieu I,Walrand S,Labar D,Carlier P,de Camps J,Schran H,Chen T,Smith MC,Bouterfa H,Valkema R, etal. 86Y-DOTA0-D-Phe1-Tyr3-octreotide (SMT487)–a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur J Nucl Med Mol Imaging 2003; 30: 510–18.
- 34 Lewis JS,Wang M,Laforest R,Wang F,Erion JL,Bugaj JE,Srinivasan A,Anderson CJ. Toxicity and dosimetry of 177Lu-DOTA-Y3-octreotate in a rat model. Int J Cancer 2001; 94: 873–7.
- 35 Konijnenberg MW. Is the renal dosimetry for [90Y-DOTA0,Tyr3]octreotide accurate enough to predict thresholds for individual patients? Cancer Biother Radiopharm 2003; 18: 619–25.
- 36 Albelda SM,Mette SA,Elder DE,Stewart R,Damjanovich L,Herlyn M,Buck CA. Integrin distribution in malignant melanoma: association of the β3 subunit with tumor progression. Cancer Res 1990; 50: 6757–64.
- 37 Liapis H,Flath A,Kitazawa S. Integrin αvβ3 expression by bone-residing breast cancer metastases. Diagn Mol Pathol 1996; 5: 127–35.
- 38 Zheng DQ,Woodard AS,Fornaro M,Tallini G,Languino LR. Prostatic carcinoma cell migration via αvβ3 integrin is modulated by a focal adhesion kinase pathway. Cancer Res 1999; 59: 1655–64.