Using multilayer perceptron and similarity-weighted machine learning algorithms to reconstruct the past: A case study of the agricultural expansion on grasslands in the Uruguayan savannas
Corresponding Author
Bruna Batista Kappes
Programa de Pós-Graduação em Sensoriamento Remoto (PPGSR), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Address correspondence to [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Methodology, Software, Validation
Search for more papers by this authorTatiana Mora Kuplich
Instituto Nacional de Pesquisas Espaciais (INPE), Coordenação Espacial do Sul (COESU), Porto Alegre, Rio Grande do Sul, Brazil
Contribution: Conceptualization, Supervision, Validation, Writing - review & editing
Search for more papers by this authorTatiana Silva da Silva
Instituto de Geociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Contribution: Conceptualization, Software, Writing - review & editing
Search for more papers by this authorEliseu José Weber
Departamento Interdisciplinar e Programa de Pós-Graduação em Sensoriamento Remoto (PPGSR), Universidade Federal do Rio Grande do Sul (UFRGS), Tramandaí, Rio Grande do Sul, Brazil
Contribution: Formal analysis, Writing - review & editing
Search for more papers by this authorCorresponding Author
Bruna Batista Kappes
Programa de Pós-Graduação em Sensoriamento Remoto (PPGSR), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Address correspondence to [email protected]
Contribution: Conceptualization, Data curation, Formal analysis, Methodology, Software, Validation
Search for more papers by this authorTatiana Mora Kuplich
Instituto Nacional de Pesquisas Espaciais (INPE), Coordenação Espacial do Sul (COESU), Porto Alegre, Rio Grande do Sul, Brazil
Contribution: Conceptualization, Supervision, Validation, Writing - review & editing
Search for more papers by this authorTatiana Silva da Silva
Instituto de Geociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
Contribution: Conceptualization, Software, Writing - review & editing
Search for more papers by this authorEliseu José Weber
Departamento Interdisciplinar e Programa de Pós-Graduação em Sensoriamento Remoto (PPGSR), Universidade Federal do Rio Grande do Sul (UFRGS), Tramandaí, Rio Grande do Sul, Brazil
Contribution: Formal analysis, Writing - review & editing
Search for more papers by this authorAbstract
Changes in land use and land cover (LULC) have significant implications for biodiversity, ecosystem functioning, and deforestation. Modeling LULC changes is crucial to understanding anthropogenic impacts on environmental conservation and ecosystem services. Although previous studies have focused on predicting future changes, there is a growing need to determine past scenarios using new assessment tools. This study proposes a methodology for LULC past scenario generation based on transition analysis. Aiming to hindcast LULC scenario in 1970 based on the transition analysis of the past 35 years (from 1985 to 2020), two machine learning algorithms, multilayer perceptron (MLP) and similarity weighted (SimWeight), were employed to determine the driver variables most related to conversions in LULC and to simulate the past. The study focused on the Aristida spp. grasslands in the Uruguayan savannas, where native grasslands have been extensively converted to agricultural areas. Land use and land cover data from the MapBiomas project were integrated with spatial variables such as altimetry, slope, pedology, and linear distances from rivers, roads, urban areas, agriculture, forest, forestry, and native grasslands. The accuracy of the predicted maps was assessed through stratified random sampling of reference images from the Multispectral Scanner (MSS) sensor. The results demonstrate a reduction of approximately 659 934 ha of native grasslands in the study area between 1985 and 2020, directly proportional to the increase in cultivable areas. The MLP algorithm exhibited moderate performance, with notable errors in classifying agriculture and grassland areas. In contrast, the SimWeight algorithm displayed better accuracy, particularly in distinguishing grassland and agriculture classes. The modeled map using SimWeight accurately represented the transitions between grassland and agriculture with a high level of agreement. By modeling the 1970s scenario using the SimWeight model, it was estimated that the Aristida spp. grasslands experienced a substantial reduction in grassland coverage, ranging from 9982.31 to 10 022.32 km2 between 1970 and 2020. This represents a range of 60.8%–61.07% of the total grassland area in 1970. These findings provide valuable insights into the driving factors behind land use change in the Aristida spp. grasslands and offer useful information for land management, conservation, and sustainable development in the region. The study's main contribution lies in the hindcasting of past LULC scenarios, utilizing a tool used primarily for forecasting future scenarios. Integr Environ Assess Manag 2024;20:1140–1155. © 2023 SETAC
CONFLICT OF INTEREST
The authors declare no conflicts of interest.
Open Research
DATA AVAILABILITY STATEMENT
Data, associated metadata, and calculation tools are available from corresponding author Bruna Kappes ([email protected]).
Supporting Information
This article contains online-only Supporting Information.
Filename | Description |
---|---|
ieam4852-sup-0001-Supporting_information_MLP_vs_SimWeight.docx1.7 MB | Appendix 1. Driver variables tested for the MLP and SimWeight models. Appendix 2. Pedology map produced by the Brazilian Institute of Geography and Statistics (IBGE). |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Barber, C. P., Cochrane, M. A., Souza, C. M., & Laurance, W. F. (2014). Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biological Conservation, 177(2014), 203–209. https://doi.org/10.1016/j.biocon.2014.07.004
- Boldrini, I. I. (2009). A flora dos campos do Rio Grande do Sul. In V. D. P. Pillar, S. C. Müller, Z. M. C. Castilhos, & A. V. A. Jacques (Eds.), Campos Sulinos: Conservação e Uso Sustentável Da Biodiversidade (pp. 63–77). Ministério do Meio Ambiente.
- Brasil. (2012). Lei 12.651. http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm
- Brentano, B., Follmann, F. M., & Foleto, E. (2015). Contextualização Das Unidades De Conservação No Estado Do Rio Grande Do Sul, Brasil. Ciência e Natura, 37(3), 543. https://doi.org/10.5902/2179460x17278
10.5902/2179460x17278 Google Scholar
- Bununu, Y. A. (2017). Integration of Markov chain analysis and similarity-weighted instance-based machine learning algorithm (SimWeight) to simulate urban expansion. International Journal of Urban Sciences, 21(2), 217–237. https://doi.org/10.1080/12265934.2017.1284607
- Conceição, O. A. C. (1986). A Expansão Da Soja No Rio Grande Do Sul 1950-75, 108. FEE. http://cdn.fee.tche.br/digitalizacao/teses-fee/expansao-soja-rio-grande-do-sul-teses-6/expansao-soja-rio-grande-do-sul-teses-6-texto.pdf.pdf
- dos Santos, A. R., Anjinho, P. S., Neves, G. L., Barbosa, M. A. G. A., de Assis, L. C., & Mauad, F. F. (2021). Dynamics of environmental conservation: Evaluating the past for a sustainable future. International Journal of Applied Earth Observation and Geoinformation, 102, 102452. https://doi.org/10.1016/j.jag.2021.102452
- Eastman, J. R. (2012). IDRISI Selva tutorial (Vol. 45, pp. 51–63). Idrisi Production, Clark Labs-Clark University.
- Eastman, J. R. (2016a). TerrSet Geospatial monitoring modeling system. Clark University.
- Eastman, J. R. (2016b). TerrSet manual (Vol. 1, pp. 204–217).
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning—Data mining, interface and prediction. Preface to the Second Edition ( 2nd ed., 809 pp). Springer.
- García-Álvarez, D., Camacho Olmedo, M. T., Van Delden, H., Mas, J.-F., & Paegelow, M. (2022). Comparing the structural uncertainty and uncertainty management in four common Land Use Cover Change (LUCC) model software packages. Environmental Modelling & Software, 153(April), 105411. https://doi.org/10.1016/j.envsoft.2022.105411
10.1016/j.envsoft.2022.105411 Google Scholar
- Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the Multi Layer Perceptron)—a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14), 2627–2636.
- GeoFabrik. (2018). Geofabrik: Download server for OpenStreetMap data. http://download.geofabrik.de/south-america/brazil/sul.html
- Gibson, D. J. (2009). Grasses and grassland ecology. African Journal of Range & Forage Science, 27(1), 12–15.
- Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
- Gupta, R., & Sharma, L. K. (2020). Efficacy of Spatial Land Change Modeler as a forecasting indicator for anthropogenic change dynamics over five decades: A case study of Shoolpaneshwar Wildlife Sanctuary, Gujarat, India. Ecological Indicators, 112(2019), 106171. https://doi.org/10.1016/j.ecolind.2020.106171
10.1016/j.ecolind.2020.106171 Google Scholar
- Hasenack, H., Weber, E. J., Boldrini, I., & Trevisan, R. (2010a). Sistemas ecológicos das Savanas Uruguaias. https://www.ufrgs.br/labgeo/index.php/dados-espaciais/249-sistemas-ecologicos-das-savanas-uruguaias
- Hasenack, H., Weber, E. J., Boldrini, I., & Trevisan, R. (2010b). Mapa de sistemas ecológicos da ecorregião das savanas uruguaias em escala 1:500.000 ou superior e relatório técnico descrevendo insumos utilizados e metodologia de elaboração do mapa de sistemas ecológicos (Relatório Técnico, The Nature Conservancy, 18 pp).
- Hasenack, H., Weber, E. J., Boldrini, I., Trevisan, R., Flores, C. A., & Dewes, H. (2023). Delimitação biofísica de sistemas ecológicos campestres no Estado do Rio Grande do Sul, sul do Brasil. Iheringia, Série Botânica, 78, e2023001. https://doi.org/10.21826/2446-82312023v78e2023001
10.21826/2446-82312023v78e2023001 Google Scholar
- Hijmans, R. J. (2010). raster: Geographic data analysis and modeling. R package (Version 1.2-6). https://CRAN.R-project.org/package=raster
- ICMBio (Instituto Chico Mendes de Conservação da Biodiversidade). (2018). Livro Vermelho da Fauna Brasileira Ameaçada de Extinção.
- Instituto Brasileiro de Geografia e Estatística (IBGE). (1996). Censo agropecuário 1996.
- Instituto Brasileiro de Geografia e Estatística (IBGE). (2005). Censo agropecuário 2005.
- Instituto Brasileiro de Geografia e Estatística (IBGE). (2018). Pedologia 1:250.000. https://www.ibge.gov.br/geociencias/informacoes-ambientais/pedologia/10871-pedologia.html?=&t=downloads
- Instituto Nacional de Meteorologia (INMET). (2022). Normais Climatológicas 1991–2020 (27 pp). https://clima.inmet.gov.br/NormaisClimatologicas/1961-1990/precipitacao_acumulada_mensal_anual
- Japelaghi, M., Hajian, F., Gholamalifard, M., Pradhan, B., Maulud, K. N. A., & Park, H. J. (2022). Modelling the impact of land cover changes on carbon storage and sequestration in the Central Zagros Region, Iran using ecosystem services approach. Land, 11(3), 423. https://doi.org/10.3390/land11030423
- Jones, M. B. (2010). Potential for carbon sequestration in temperate grassland soils. In Grassland carbon sequestration: Management, policy and economics. Proceedings of the workshop on the role of grassland carbon sequestration in the mitigation of climate change (pp. 1–18). Integrated Crop Management v. 11. Food and Agritulture Organization.
- Kavian, A., Golshan, M., & Abdollahi, Z. (2017). Flow discharge simulation based on land use change predictions. Environmental Earth Sciences, 76(16), 588. https://doi.org/10.1007/s12665-017-6906-0
- Keith, D. A., Rodríguez, J. P., Rodríguez-Clark, K. M., Nicholson, E., Aapala, K., Alonso, A., Asmussen, M., Bachman, S., Basset, A., Barrow, E. G., Benson, J. S., Bishop, M. J., Bonifacio, R., Brooks, T. M., Burgman, M. A., Comer, P., Comín, F. A., Essl, F., Faber-Langendoen, D., … Zambrano-Martínez, S. (2013). Scientific foundations for an IUCN Red List of ecosystems. PLoS One, 8(5), e62111. https://doi.org/10.1371/journal.pone.0062111
- Kulithalai Shiyam Sundar, P., & Deka, P. C. (2022). Spatio-temporal classification and prediction of land use and land cover change for the Vembanad Lake system, Kerala: A machine learning approach. Environmental Science and Pollution Research, 29(57), 86220–86236. https://doi.org/10.1007/s11356-021-17257-0
- Leta, M. K., Demissie, T. A., & Tränckner, J. (2021). Modeling and prediction of land use land cover change dynamics based on land change modeler (Lcm) in nashe watershed, upper Blue Nile Basin, Ethiopia. Sustainability (Switzerland), 13(7), 3740. https://doi.org/10.3390/su13073740
- Li, S. H., Jin, B. X., Wei, X. Y., Jiang, Y. Y., & Wang, J. L. (2015). Using CA-Markov model to model the spatiotemporal land use/cover in Fuxian Lake for decision support. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2(4W2), 163–168. https://doi.org/10.5194/isprsannals-II-4-W2-163-2015
10.5194/isprsannals-II-4-W2-163-2015 Google Scholar
- Liu, S., Li, X., Chen, D., Duan, Y., Ji, H., Zhang, L., Chai, Q., & Hu, X. (2020). Understanding land use/land cover dynamics and impacts of human activities in the Mekong Delta over the last 40 years. Global Ecology and Conservation, 22, e00991. https://doi.org/10.1016/j.gecco.2020.e00991
- Lottering, R. T., Govender, M., Peerbhay, K., & Lottering, S. (2020). Comparing partial least squares (PLS) discriminant analysis and sparse PLS discriminant analysis in detecting and mapping Solanum mauritianum in commercial forest plantations using image texture. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 271–280. https://doi.org/10.1016/j.isprsjprs.2019.11.019
- MapBiomas. (2021). Coleção 6 da Série Anual de Mapas de Uso e Cobertura da Terra do Brasil. https://mapbiomas.org/
- Mas, J., Kolb, M., Paegelow, M., Camacho, M. T., Houet, T., Mas, J., Kolb, M., Paegelow, M., Teresa, M., Olmedo, C., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51, 94–111. https://doi.org/10.1016/j.envsoft.2013.09.010.hal-01187569HAL
- Maulidya, A., Damayanti, A., Indra, T. L., & Dimyati, M. (2021). Prediction of land change for oil palm plantations in Penajam Subdistrict, Penajam Paser Utara Regency, East Kalimantan Province. Journal of Physics: Conference Series, 1811, 012072. https://doi.org/10.1088/1742-6596/1811/1/012072
10.1088/1742-6596/1811/1/012072 Google Scholar
- Mengue, V. P. (2018). Utilização de séries temporais de imagens de moderada resolução espacial para monitoramento das mudanças do uso do solo e cobertura vegetal do biomapampa (Publication No. 001068641) [Doctoral Thesis at Federal University of Rio Grande do Sul]. Available in www.lume.ufrgs.br/bitstream/handle/10183/179569/001068641.pdf
- Mengue, V. P., da Silva, T., Fontana, D., & Scottá, F. (2018). Detecção de mudanças espaciais relacionadas à expansão da fronteira agrícola no Bioma Pampa. Revista Brasileira de Cartografia, 70(1), 40–70. https://doi.org/10.14393/rbcv70n1-45189
10.14393/rbcv70n1-45189 Google Scholar
- Mirakhorlo, M. S., & Rahimzadegan, M. (2018). Integration of SimWeight and Markov chain to predict land use of Lavasanat Basin. Numerical Methods in Civil Engineering, 2(4), 1–9. https://doi.org/10.29252/nmce.2.4.1
10.29252/nmce.2.4.1 Google Scholar
- Ministério do Meio Ambiente. (2014). Portaria Ministério do Meio Ambiente n° 443, de 17 de dezembro de 2014. Lista nacional oficial das espécies da Flora ameaçadas de extinção. Diário Oficial da União.
- Mozumder, C., Tripathi, N. K., & Losiri, C. (2016). Comparing three transition potential models: A case study of built-up transitions in North-East India. Computers, Environment and Urban Systems, 59, 38–49. https://doi.org/10.1016/j.compenvurbsys.2016.04.009
- Nelson, E., Sander, H., Hawthorne, P., Conte, M., Ennaanay, D., Wolny, S., Manson, S., & Polasky, S. (2010). Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS One, 5(12), e14327. https://doi.org/10.1371/journal.pone.0014327
- Nitze, I., Barrett, B., & Cawkwell, F. (2015). Temporal optimisation of image acquisition for land cover classification with random forest and MODIS time-series. International Journal of Applied Earth Observation and Geoinformation, 34(1), 136–146. https://doi.org/10.1016/j.jag.2014.08.001
10.1016/j.jag.2014.08.001 Google Scholar
- Nyéki, A., Kerepesi, C., Daróczy, B., Benczúr, A., Milics, G., Nagy, J., Harsányi, E., Kovács, A. J., & Neményi, M. (2021). Application of spatio-temporal data in site-specific maize yield prediction with machine learning methods. Precision Agriculture, 22(5), 1397–1415. https://doi.org/10.1007/s11119-021-09833-8
- Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57. https://doi.org/10.1016/j.rse.2014.02.015
- Overbeck, G. E., Müller, S. C., Fidelis, A., Pfadenhauer, J., Pillar, V. D., Blanco, C. C., Boldrini, I. I., Both, R., & Forneck, E. D. (2009). Os Campos Sulinos: Um bioma negligenciado (pp. 26–41). Conservação e Uso Sustentável Da Biodiversidade, Ministério Do Meio Ambiente.
- Pillar, V. D. P., Müller, S. C., Castilhos, Z. M. S. C., & Jacques, A. V. Á. J. (2009, May). Campos Sulinos—conservação e uso sustentável da biodiversidade. Ministério do Meio Ambiente.
- Pontius, R. G., & Millones, M. (2011). Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407–4429. https://doi.org/10.1080/01431161.2011.552923
- Pontius, R. G., & Santacruz, A. (2014). Quantity, exchange, and shift components of difference in a square contingency table. International Journal of Remote Sensing, 35(21), 7543–7554. https://doi.org/10.1080/2150704X.2014.969814
- Reichenbach, P., Busca, C., Mondini, A. C., & Rossi, M. (2014). The influence of land use change on landslide susceptibility zonation: The Briga Catchment Test Site (Messina, Italy). Environmental Management, 54(6), 1372–1384. https://doi.org/10.1007/s00267-014-0357-0
- Rio Grande do Sul. (2019). Exportações do agronegócio. Secretaria de Planejamento, Orçamento e Gestão, Departamento de Economia e Estatística.
- Ríos, C., Lezama, F., Rama, G., Baldi, G., & Baeza, S. (2022). Natural grassland remnants in dynamic agricultural landscapes: Identifying drivers of fragmentation. Perspectives in Ecology and Conservation, 20, 205–215. https://doi.org/10.1016/j.pecon.2022.04.003
- Sangermano, F., Eastman, J. R., & Zhu, H. (2010). Similarity weighted instance-based learning for the generation of transition potentials in land use change modeling. Transactions in GIS, 14(5), 569–580. https://doi.org/10.1111/j.1467-9671.2010.01226.x
- Scurlock, J. M. O., & Hall, D. O. (1998). The global carbon sink: A grassland perspective. Global Change Biology, 4(2), 229–233. https://doi.org/10.1046/j.1365-2486.1998.00151.x
- Souza, C. M., Shimbo, J. Z., Rosa, M. R., Parente, L. L., Alencar, A. A., Rudorff, B. F. T., Hasenack, H., Matsumoto, M., Ferreira, L. G., Souza-Filho, P. W. M., de Oliveira, S. W., Rocha, W. F., Fonseca, A. V., Marques, C. B., Diniz, C. G., Costa, D., Monteiro, D., Rosa, E. R., Vélez-Martin, E., … Azevedo, T. (2020). Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sensing, 12(17), 2735. https://doi.org/10.3390/RS12172735
- Teixeira-Filho, A., & Winckler, L. T. (2020). Anais do I Congresso sobre o Bioma Pampa. Editora UFPel.
- Tian, H., Banger, K., Bo, T., & Dadhwal, V. K. (2014). History of land use in India during 1880–2010: Large-scale land transformations reconstructed from satellite data and historical archives. Global and Planetary Change, 121, 78–88. https://doi.org/10.1016/j.gloplacha.2014.07.005
- US Geological Survey. (2022). Earth Explorer. https://earthexplorer.usgs.gov/
- Valkó, O., Deák, B., Török, P., Kelemen, A., Miglécz, T., Tóth, K., & Tóthmérész, B. (2016). Abandonment of croplands: Problem or chance for grassland restoration? Case studies from Hungary. Ecosystem Health and Sustainability, 2(2), e01208. https://doi.org/10.1002/ehs2.1208
10.1002/ehs2.1208 Google Scholar
- Yang, Y., Zhang, S., Yang, J., Xing, X., & Wang, D. (2015). Using a cellular Automata-Markov model to reconstruct spatial land-use patterns in Zhenlai County, Northeast China. Energies, 8(5), 3882–3902. https://doi.org/10.3390/en8053882
- Zabihi, M., Moradi, H., Gholamalifard, M., Darvishan, A. K., & Fürst, C. (2020). Landscape management through change processes monitoring in Iran. Sustainability (Switzerland), 12(5), 1–19. https://doi.org/10.3390/su12051753
- Zubair, O. A., Ji, W., & Weilert, T. E. (2017). Modeling the impact of urban landscape change on urban wetlands using similarity weighted instance-based machine learning and Markov model. Sustainability (Switzerland), 9(12), 2223. https://doi.org/10.3390/su9122223