On the use of leaf water to determine plant water source: A proof of concept
Corresponding Author
Paolo Benettin
Laboratory of Ecohydrology ECHO/IIE/ENAC, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Correspondence
Paolo Benettin, Laboratory of Ecohydrology ECHO/IIE/ENAC, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Email: [email protected]
Search for more papers by this authorMagali F. Nehemy
Global Institute for Water Security, School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
Search for more papers by this authorLucas A. Cernusak
College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
Search for more papers by this authorAnsgar Kahmen
Department of Environmental Science–Botany, University of Basel, Basel, Switzerland
Search for more papers by this authorJeffrey J. McDonnell
Global Institute for Water Security, School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
Search for more papers by this authorCorresponding Author
Paolo Benettin
Laboratory of Ecohydrology ECHO/IIE/ENAC, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Correspondence
Paolo Benettin, Laboratory of Ecohydrology ECHO/IIE/ENAC, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Email: [email protected]
Search for more papers by this authorMagali F. Nehemy
Global Institute for Water Security, School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
Search for more papers by this authorLucas A. Cernusak
College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
Search for more papers by this authorAnsgar Kahmen
Department of Environmental Science–Botany, University of Basel, Basel, Switzerland
Search for more papers by this authorJeffrey J. McDonnell
Global Institute for Water Security, School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Canada
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
Search for more papers by this authorAbstract
Source water apportionment studies using the dual isotopes of oxygen and hydrogen have revolutionized our understanding of ecohydrology. But despite these developments—mostly over the past decade—many technical problems still exist in terms of linking xylem water to its soil water and groundwater sources. This is mainly due to sampling issues and possible fractionation of xylem water. Here we explore whether or not leaf water alone can be used to quantify the blend of rainfall event inputs from which the leaf water originates. Leaf water has historically been avoided in plant water uptake studies due to the extreme fractionation processes at the leaf surface. In our proof of concept work we embrace those processes and use the well-known Craig and Gordon model to map leaf water back to its individual precipitation event water sources. We also employ a Bayesian uncertainty estimation approach to quantify source apportionment uncertainties. We show this using a controlled, vegetated lysimeter experiment where we were able to use leaf water to correctly identify the mean seasonal rainfall that was taken up by the plant, with an uncertainty typically within ±1‰ for δ18O. While not appropriate for all source water studies, this work shows that leaf water isotope composition may provide a new, relatively un-intrusive method for addressing questions about the plant water source.
Open Research
DATA AVAILABILITY STATEMENT
Data is available as part of the SPIKE II tracer experiment dataset (Nehemy et al., 2020) at doi.org/10.5281/zenodo.4037240.
Supporting Information
Filename | Description |
---|---|
hyp14073-sup-0001-SupInfo.pdfPDF document, 408.3 KB | Appendix S1. Supporting Information. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Allen, S. T., Kirchner, J. W., Braun, S., Siegwolf, R. T. W., & Goldsmith, G. R. (2019). Seasonal origins of soil water used by trees. Hydrology and Earth System Sciences, 23(2), 1199–1210. https://doi.org/10.5194/hess-23-1199-2019
- Araguás-Araguás, L., Rozanski, K., Gonfiantini, R., & Louvat, D. (1995). Isotope effects accompanying vacuum extraction of soil water for stable isotope analyses. Journal of Hydrology, 168(1–4), 159–171. https://doi.org/10.1016/0022-1694(94)02636-P
- Barbeta, A., Gimeno, T. E., Clavé, L., Fréjaville, B., Jones, S. P., Delvigne, C., Wingate, L., & Ogée, J. (2020). An explanation for the isotopic offset between soil and stem water in a temperate tree species. New Phytologist, 227(3), 766–779. https://doi.org/10.1111/nph.16564
- Barbeta, A., Jones, S. P., Clavé, L., Wingate, L., Gimeno, T. E., Fréjaville, B., Wohl, S., & Ogée, J. (2019). Unexplained hydrogen isotope offsets complicate the identification and quantification of tree water sources in a riparian forest. Hydrology and Earth System Sciences, 23(4), 2129–2146. https://doi.org/10.5194/hess-23-2129-2019
- Benettin, P., Queloz, P., Bensimon, M., McDonnell, J. J., & Rinaldo, A. (2019). Velocities, residence times, tracer breakthroughs in a vegetated lysimeter: A multitracer experiment. Water Resources Research, 55(1), 21–33. https://doi.org/10.1029/2018WR023894
- Benettin, P., Volkmann, T. H. M., von Freyberg, J., Frentress, J., Penna, D., Dawson, T. E., & Kirchner, J. W. (2018). Effects of climatic seasonality on the isotopic composition of evaporating soil waters. Hydrology and Earth System Sciences, 22(5), 2881–2890. https://doi.org/10.5194/hess-22-2881-2018
- Berry, Z. C., Evaristo, J., Moore, G., Poca, M., Steppe, K., Verrot, L., Asbjornsen, H., Borma, L. S., Bretfeld, M., Hervé-Fernández, P., Seyfried, M., Schwendenmann, L., Sinacore, K., de Wispelaere, L., & McDonnell, J. (2018). The two water worlds hypothesis: Addressing multiple working hypotheses and proposing a way forward. Ecohydrology, 11(3), e1843. https://doi.org/10.1002/eco.1843
- Beyer, M., Kühnhammer, K., & Dubbert, M. (2020). In situ measurements of soil and plant water isotopes: A review of approaches, practical considerations and a vision for the future. Hydrology and Earth System Sciences, 24(9), 4413–4440. https://doi.org/10.5194/hess-24-4413-2020
- Bowen, G. J., Putman, A., Brooks, J. R., Bowling, D. R., Oerter, E. J., & Good, S. P. (2018). Inferring the source of evaporated waters using stable H and O isotopes. Oecologia, 187(4), 1025–1039. https://doi.org/10.1007/s00442-018-4192-5
- Bowling, D. R., Schulze, E. S., & Hall, S. J. (2017). Revisiting streamside trees that do not use stream water: Can the two water worlds hypothesis and snowpack isotopic effects explain a missing water source? https://doi.org/10.1002/eco.1771
- Brooks, J. R., Barnard, H. R., Coulombe, R., & McDonnell, J. J. (2010). Ecohydrologic separation of water between trees and streams in a Mediterranean climate. https://doi.org/10.1038/ngeo722
- Brunel, J.-P., Walker, G. R., & Kennett-Smith, A. K. (1995). Field validation of isotopic procedures for determining sources of water used by plants in a semi-arid environment. Journal of Hydrology, 167(1–4), 351–368. https://doi.org/10.1016/0022-1694(94)02575-V
- Cernusak, L. A., Barbour, M. M., Arndt, S. K., Cheesman, A. W., English, N. B., Feild, T. S., Helliker, B. R., Holloway-Phillips, M. M., Holtum, J. A. M., Kahmen, A., McInerney, F. A., Munksgaard, N. C., Simonin, K. A., Song, X., Stuart-Williams, H., West, J. B., & Farquhar, G. D. (2016). Stable isotopes in leaf water of terrestrial plants: Stable isotopes in leaf water. Plant, Cell & Environment, 39(5), 1087–1102. https://doi.org/10.1111/pce.12703
- Chen, Y., Helliker, B. R., Tang, X., Li, F., Zhou, Y., & Song, X. (2020). Stem water cryogenic extraction biases estimation in deuterium isotope composition of plant source water. Proceedings of the National Academy of Sciences, 117(52), 33345–33350. https://doi.org/10.1073/pnas.2014422117
- Cluett, A. A., & Thomas, E. K. (2020). Resolving combined influences of inflow and evaporation on western Greenland lake water isotopes to inform paleoclimate inferences. Journal of Paleolimnology, 63(4), 251–268. https://doi.org/10.1007/s10933-020-00114-4
- Craig, H., & Gordon, L. I. (1965). Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In E. Tongiorgi (Ed.), Stable Isotopes in Oceanographic Studies and Paleotemperatures, Spoleto, Italy (pp. 9–130). Consiglio nazionale delle ricerche, Laboratorio di geologia nucleare.
- Dawson, T. E., & Ehleringer, J. R. (1991). Streamside trees that do not use stream water. https://doi.org/10.1038/350335a0
- Dawson, T. E., & Ehleringer, J. R. (1993). Isotopic enrichment of water in the “woody” tissues of plants: Implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose. Geochimica et Cosmochimica Acta, 57(14), 3487–3492. https://doi.org/10.1016/0016-7037(93)90554-A
- de Deurwaerder, H. P. T., Visser, M. D., Detto, M., Boeckx, P., Meunier, F., Kuehnhammer, K., … Verbeeck, H. (2020). Causes and consequences of pronounced variation in the isotope composition of plant xylem water. Biogeosciences, 17(19), 4853–4870. https://doi.org/10.5194/bg-17-4853-2020
- Dongmann, G., Nürnberg, H. W., Förstel, H., & Wagener, K. (1974). On the enrichment of H2 18O in the leaves of transpiring plants. Radiation and Environmental Biophysics, 11(1), 41–52. https://doi.org/10.1007/BF01323099
- Dwivedi, R., Eastoe, C., Knowles, J. F., Wright, W. E., Hamann, L., Minor, R., Mitra, B., Meixner, T., McIntosh, J., Ty Ferre, P. A., Castro, C., Niu, G. Y., Barron-Gafford, G. A., Abramson, N., Papuga, S. A., Stanley, M., Hu, J., & Chorover, J. (2020). Vegetation source water identification using isotopic and hydrometric observations from a subhumid mountain catchment. Ecohydrology, 13(1), e2167. https://doi.org/10.1002/eco.2167
- Ellsworth, P. Z., & Sternberg, L. S. L. (2015). Seasonal water use by deciduous and evergreen woody species in a scrub community is based on water availability and root distribution: Deciduous and evergreen water uptake. Ecohydrology, 8(4), 538–551. https://doi.org/10.1002/eco.1523
- Ellsworth, P. Z., & Williams, D. G. (2007). Hydrogen isotope fractionation during water uptake by woody xerophytes. Plant and Soil, 291(1–2), 93–107. https://doi.org/10.1007/s11104-006-9177-1
- Epstein, S., & Mayeda, T. (1953). Variation of O18 content of waters from natural sources. Geochimica et Cosmochimica Acta, 4(5), 213–224. https://doi.org/10.1016/0016-7037(53)90051-9
- Evaristo, J., Jasechko, S., & McDonnell, J. J. (2015). Global separation of plant transpiration from groundwater and streamflow. https://doi.org/10.1038/nature14983
- Farquhar, G. D., & Cernusak, L. A. (2005). On the isotopic composition of leaf water in the non-steady state. Functional Plant Biology, 32(4), 293–303. https://doi.org/10.1071/FP04232
- Flanagan, L. B., & Ehleringer, J. R. (1991). Effects of mild water stress and diurnal changes in temperature and humidity on the stable oxygen and hydrogen isotopic composition of leaf water in Cornus stolonifera L. Plant Physiology, 97(1), 298–305. https://doi.org/10.1104/pp.97.1.298
- Gat, J. R. (1996). Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24(1), 225–262. https://doi.org/10.1146/annurev.earth.24.1.225
- Gibson, J. J., Birks, S. J., & Edwards, T. W. D. (2008). Global prediction of δ a and δ 2 H- δ 18 O evaporation slopes for lakes and soil water accounting for seasonality. Global Biogeochemical Cycles, 22(2). https://doi.org/10.1029/2007GB002997
- Goldsmith, G. R., Allen, S. T., Braun, S., Engbersen, N., González-Quijano, C. R., Kirchner, J. W., & Siegwolf, R. T. W. (2019). Spatial variation in throughfall, soil, and plant water isotopes in a temperate forest. Ecohydrology, 12(2), e2059. https://doi.org/10.1002/eco.2059
- Gonfiantini, R., Tongiorgi, E., & Gratziu, S. (1965). Oxygen isotope composition of water in leaves. Isotopes and Radiation in Soil-Plant Nutrition Studies, 405–410.IAEA, Vienna, Austria.
- Gonfiantini, R., Wassenaar, L. I., Araguas-Araguas, L., & Aggarwal, P. K. (2018). A unified Craig-Gordon isotope model of stable hydrogen and oxygen isotope fractionation during fresh or saltwater evaporation. Geochimica et Cosmochimica Acta, 235, 224–236. https://doi.org/10.1016/j.gca.2018.05.020
- Good, S. P., Soderberg, K., Guan, K., King, E. G., Scanlon, T. M., & Caylor, K. K. (2014). δ2H isotopic flux partitioning of evapotranspiration over a grass field following a water pulse and subsequent dry down. Water Resources Research, 50(2), 1410–1432. https://doi.org/10.1002/2013WR014333
- Horita, J., Rozanski, K., & Cohen, S. (2008). Isotope effects in the evaporation of water: A status report of the Craig–Gordon model. Isotopes in Environmental and Health Studies, 44(1), 23–49. https://doi.org/10.1080/10256010801887174
- Koeniger, P., Marshall, J. D., Link, T., & Mulch, A. (2011). An inexpensive, fast, and reliable method for vacuum extraction of soil and plant water for stable isotope analyses by mass spectrometry. Rapid Communications in Mass Spectrometry, 25(20), 3041–3048. https://doi.org/10.1002/rcm.5198
- Marshall, J. D., Cuntz, M., Beyer, M., Dubbert, M., & Kuehnhammer, K. (2020). Borehole equilibration: Testing a new method to monitor the isotopic composition of tree xylem water in situ. Frontiers in Plant Science, 11, 358. https://doi.org/10.3389/fpls.2020.00358
- Martín-Gómez, P., Serrano, L., & Ferrio, J. P. (2017). Short-term dynamics of evaporative enrichment of xylem water in woody stems: Implications for ecohydrology. Tree Physiology. 37(4), 511–522. https://doi.org/10.1093/treephys/tpw115
- Millar, C., Pratt, D., Schneider, D. J., & McDonnell, J. J. (2018). A comparison of extraction systems for plant water stable isotope analysis. Rapid Communications in Mass Spectrometry, 32(13), 1031–1044. https://doi.org/10.1002/rcm.8136
- Morrison, J., Brockwell, T., Merren, T., Fourel, F., & Phillips, A. M. (2001). On-line high-precision stable hydrogen isotopic analyses on Nanoliter water samples. Analytical Chemistry, 73(15), 3570–3575. https://doi.org/10.1021/ac001447t
- Nehemy, M. F., Benettin, P., Asadollahi, M., Pratt, D., Rinaldo, A., & McDonnell, J. J. (2021). Tree water deficit and dynamic source water partitioning. Hydrological Processes, 35(1), e14004. https://doi.org/10.1002/hyp.14004
- Nehemy, M. F., Benettin, P., Asadollahi, M., Pratt, D., Rinaldo, A., & McDonnell, J. J. (2020). Dataset: The SPIKE II experiment—Tracing the water balance [Data set]. Zenodo. https://doi.org/10.5281/ZENODO.4037240
- Nehemy, M. F., Millar, C., Janzen, K., Gaj, M., Pratt, D. L., Laroque, C. P., & McDonnell, J. J. (2019). 17 O-excess as a detector for co-extracted organics in vapor analyses of plant isotope signatures. Rapid Communications in Mass Spectrometry, 33(16), 1301–1310. https://doi.org/10.1002/rcm.8470
- Orlowski, N., Pratt, D. L., & McDonnell, J. J. (2016). Intercomparison of soil pore water extraction methods for stable isotope analysis. https://doi.org/10.1002/hyp.10870
- Penna, D., Geris, J., Hopp, L., & Scandellari, F. (2020). Water sources for root water uptake: Using stable isotopes of hydrogen and oxygen as a research tool in agricultural and agroforestry systems. Agriculture, Ecosystems & Environment, 291, 106790. https://doi.org/10.1016/j.agee.2019.106790
- Penna, D., Hopp, L., Scandellari, F., Allen, S. T., Benettin, P., Beyer, M., Geris, J., Klaus, J., Marshall, J. D., Schwendenmann, L., Volkmann, T. H. M., von Freyberg, J., Amin, A., Ceperley, N., Engel, M., Frentress, J., Giambastiani, Y., McDonnell, J. J., Zuecco, G., … Kirchner, J. W. (2018). Ideas and perspectives: Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes—Challenges and opportunities from an interdisciplinary perspective. Biogeosciences, 15(21), 6399–6415. https://doi.org/10.5194/bg-15-6399-2018
- Piayda, A., Dubbert, M., Siegwolf, R., Cuntz, M., & Werner, C. (2017). Quantification of dynamic soil–vegetation feedbacks following an isotopically labelled precipitation pulse. Biogeosciences, 14(9), 2293–2306. https://doi.org/10.5194/bg-14-2293-2017
- Roden, J. S., & Ehleringer, J. R. (1999). Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig-Gordon model under wide-ranging environmental conditions. Plant Physiology, 120(4), 1165–1174. https://doi.org/10.1104/pp.120.4.1165
- Vargas, A. I., Schaffer, B., Yuhong, L., & Sternberg, L. d. S. L. (2017). Testing plant use of mobile vs immobile soil water sources using stable isotope experiments. New Phytologist, 215(2), 582–594. https://doi.org/10.1111/nph.14616
- Volkmann, T. H. M., Haberer, K., Gessler, A., & Weiler, M. (2016). High-resolution isotope measurements resolve rapid ecohydrological dynamics at the soil–plant interface. New Phytologist, 210(3), 839–849. https://doi.org/10.1111/nph.13868
- von Freyberg, J., Allen, S. T., Grossiord, C., & Dawson, T. E. (2020). Plant and root-zone water isotopes are difficult to measure, explain, and predict: Some practical recommendations for determining plant water sources. Methods in Ecology and Evolution, 11(11), 1352–1367. https://doi.org/10.1111/2041-210X.13461
- Zhao, L., Wang, L., Cernusak, L. A., Liu, X., Xiao, H., Zhou, M., & Zhang, S. (2016). Significant difference in hydrogen isotope composition between xylem and tissue water in Populus Euphratica: Deuterium fractionation in plants. Plant, Cell & Environment, 39(8), 1848–1857. https://doi.org/10.1111/pce.12753