Describing alpine lake influence on stream network temperatures: A statistical modelling approach
Corresponding Author
Samuel P. Carlson
Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana
Correspondence
Samuel P. Carlson, Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA.
Email: [email protected]
Search for more papers by this authorGeoffrey C. Poole
Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana
Montana Institute on Ecosystems, Montana State University, Bozeman, Montana
Search for more papers by this authorCorresponding Author
Samuel P. Carlson
Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana
Correspondence
Samuel P. Carlson, Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA.
Email: [email protected]
Search for more papers by this authorGeoffrey C. Poole
Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana
Montana Institute on Ecosystems, Montana State University, Bozeman, Montana
Search for more papers by this authorAbstract
Systematic variations in atmospheric heat exchange, surface residence time, and groundwater influx across montane stream networks commonly produce an increasing stream temperature trend with decreasing elevation. However, complex stream temperature profiles that differ from this common longitudinal trend also exist, suggesting that stream temperatures may be influenced by complex interactions among hydrologic and atmospheric processes. Lakes within stream networks form one potential source of temperature profile complexity due to the spatially variable contribution of lake-sourced water to stream flow. We investigated temperature profile complexity in a multi-season stream temperature dataset collected across a montane stream network containing many alpine lakes. This investigation was performed by making comparisons between multiple statistical models that used different combinations of stream and lake characteristics to represent specific hypotheses for the controls on stream temperature. The compared models included a set of models which used a topographically derived estimate of the hydrologic influence of lakes to separate and quantify the effects of stream elevation and lake source-water contributions to longitudinal stream temperature patterns. This source-water mixing model provided a parsimonious explanation for complex stream-network temperature patterns in the summer and autumn, and this approach may be further applicable to other systems where stream temperatures are influenced by multiple water sources. Simpler models that discounted lake effects were more optimal during the winter and spring, suggesting that complex patterns in stream temperature profiles may emerge and subside temporally, across seasons, in response to diversity of water temperatures from different sources.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in Zenodo at doi.org/10.5281/zenodo.3985918.
REFERENCES
- Acuña, V., Wolf, A., Uehlinger, U., & Tockner, K. (2008). Temperature dependence of stream benthic respiration in an Alpine river network under global warming. Freshwater Biology, 53(10), 2076–2088. https://doi.org/10.1111/j.1365-2427.2008.02028.x
- Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In Selected papers of Hirotugu Akaike (pp. 199–213). Springer. Retrieved from https://doi.org/10.1007/978-1-4612-1694-0_15
10.1007/978-1-4612-1694-0_15 Google Scholar
- Arp, C. D., Schmidt, J. C., Baker, M. A., & Myers, A. K. (2007). Stream geomorphology in a mountain lake district: Hydraulic geometry, sediment sources and sinks, and downstream lake effects. Earth Surface Processes and Landforms, 32(4), 525–543. https://doi.org/10.1002/esp.1421
- Baron, J. S., & Caine, N. (2000). Temporal coherence of two alpine lake basins of the Colorado Front Range, U.S.A. Freshwater Biology, 43(3), 463–476. https://doi.org/10.1046/j.1365-2427.2000.00517.x
- Barton, K. (2016). Mumin: Multi-model inference [Computer software manual] (R package version 1.15.6). Retrieved from https://CRAN.R-project.org/package=MuMIn
- Bogan, T., Mohseni, O., & Stefan, H. G. (2003). Stream temperature-equilibrium temperature relationship. Water Resources Research, 39(9), 1245. https://doi.org/10.1029/2003WR002034
- Brown, L. E., & Hannah, D. M. (2008). Spatial heterogeneity of water temperature across an alpine river basin. Hydrological Processes, 22(7), 954–967. https://doi.org/10.1002/hyp.6982
- Burnham, K. P., & Anderson, D. R. (2003). Model selection and multimodel inference: A practical information-theoretic approach. Springer Science & Business Media.
- Caissie, D. (2006). The thermal regime of rivers: A review. Freshwater Biology, 51(8), 1389–1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x
- Callahan, M. K., Rains, M. C., Bellino, J. C., Walker, C. M., Baird, S. J., Whigham, D. F., & King, R. S. (2015). Controls on temperature in salmonid-bearing headwater streams in two common hydrogeologic settings, Kenai Peninsula, Alaska. JAWRA Journal of the American Water Resources Association, 51(1), 84–98. https://doi.org/10.1111/jawr.12235
- Carlson, S. P. (2020). Stream temperature dataset, Fall 2014 - Summer 2015, Rocky Mountian National Park, Colorado, USA. Zenodo (Version Number: 1 type: Dataset). Retrieved from https://doi.org10.5281/ZENODO.3985918
- Crisp, D., & Howson, G. (1982). Effect of air temperature upon mean water temperature in streams in the north Pennines and English Lake District. Freshwater Biology, 12(4), 359–367. https://doi.org/10.1111/j.1365-2427.1982.tb00629.x
- Demars, B. O., Russell Manson, J., Ólafsson, J. S., Gíslason, G. M., Gudmundsdóttir, R., Woodward, G., Reiss, J., Pichler, D. E., Rasmussen, J. J., & Friberg, N. (2011). Temperature and the metabolic balance of streams. Freshwater Biology, 56(6), 1106–1121. https://doi.org/10.1111/j.1365-2427.2010.02554.x
- Erickson, T. R., & Stefan, H. G. (2000). Linear air/water temperature correlations for streams during open water periods. Journal of Hydrologic Engineering, 5(3), 317–321. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(317)
- Fullerton, A. H., Torgersen, C. E., Lawler, J. J., Faux, R. N., Steel, E. A., Beechie, T. J., Ebersole, J. L., & Leibowitz, S. G. (2015). Rethinking the longitudinal stream temperature paradigm: Region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures. Hydrological Processes, 29(22), 4719–4737. https://doi.org/10.1002/hyp.10506
- Garner, G., Malcolm, I. A., Sadler, J. P., & Hannah, D. M. (2014). What causes cooling water temperature gradients in a forested stream reach? Hydrology and Earth System Sciences, 18(12), 5361–5376. https://doi.org/10.5194/hess-18-5361-2014
- GRASS Development Team. (2017). Geographic resources analysis support system (grass gis) software, version 7.2 [Computer software manual]. Retrieved from http://grass.osgeo.org
- Greenland, D. (1989). The climate of Niwot Ridge, Front Range, Colorado, U.S.A. Arctic and Alpine Research, 21(4), 380. https://doi.org/10.2307/1551647
- Ham, J., Toran, L., & Cruz, J. (2006). Effect of upstream ponds on stream temperature. Environmental Geology, 50(1), 55–61. https://doi.org/10.1007/s00254-006-0186-4
- Hebert, C., Caissie, D., Satish, M. G., & El-Jabi, N. (2011). Study of stream temperature dynamics and corresponding heat fluxes within Miramichi River catchments (New Brunswick, Canada). Hydrological Processes, 25(15), 2439–2455. https://doi.org/10.1002/hyp.8021
- Hinckley, E.-L. S., Ebel, B. A., Barnes, R. T., Anderson, R. S., Williams, M. W., & Anderson, S. P. (2012). Aspect control of water movement on hillslopes near the rain–snow transition of the Colorado Front Range. Hydrological Processes, 28(1), 74–85. https://doi.org/10.1002/hyp.9549
- Hurvich, C. M., & Tsai, C.-L. (1993). A corrected Akaike Information Criterion for vector autoregressive model selection. Journal of Time Series Analysis, 14(3), 271–279. https://doi.org/10.1111/j.1467-9892.1993.tb00144.x
10.1111/j.1467-9892.1993.tb00144.x Google Scholar
- Isaak, D. J., Luce, C. H., Rieman, B. E., Nagel, D. E., Peterson, E. E., Horan, D. L., Parkes, S., & Chandler, G. L. (2010). Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network. Ecological Applications, 20(5), 1350–1371. https://doi.org/10.1890/09-0822.1
- Jones, N. E. (2010). Incorporating lakes within the river discontinuum: Longitudinal changes in ecological characteristics in stream-lake networks. Canadian Journal of Fisheries and Aquatic Sciences, 67(8), 1350–1362. https://doi.org/10.1139/F10-069
- Leach, J. A., & Laudon, H. (2019). Headwater lakes and their influence on downstream discharge. Limnology and Oceanography Letters, 4(4), 105–112. https://doi.org/10.1002/lol2.10110
- Leach, J. A., Lidberg, W., Kuglerová, L., Peralta-Tapia, A., Agren, A., & Laudon, H. (2017). Evaluating topography-based predictions of shallow lateral groundwater discharge zones for a boreal lake-stream system. Water Resources Research, 53(7), 5420–5437. https://doi.org/10.1002/2016WR019804
- Losleben, M. (2007a). Air temperature data for saddle chart recorder from 1981 - ongoing. Environmental Data Initiative. Retrieved from https://doi.org/10.6073/pasta/898ace0c0a391f3679f9da8ef138ad26
- Losleben, M. (2007b). Precipitation data for C1 chart recorder from 1952 - ongoing. Environmental Data Initiative. Retrieved from https://doi.org/10.6073/pasta/ed56d9c8a354382238f145039105c964
- McDonnell, T. C., Sloat, M. R., Sullivan, T. J., Dolloff, C. A., Hessburg, P. F., Povak, N. A., Jackson, W. A., & Sams, C. (2015). Downstream warming and headwater acidity may diminish coldwater habitat in Southern Appalachian Mountain streams. PLoS One, 10(8), e0134757. https://doi.org/10.1371/journal.pone.0134757
- Mellina, E., Moore, R. D., Hinch, S. G., Macdonald, J. S., & Pearson, G. (2002). Stream temperature responses to clearcut logging in British Columbia: The moderating influences of groundwater and headwater lakes. Canadian Journal of Fisheries and Aquatic Sciences, 59(12), 1886–1900. https://doi.org/10.1139/f02-158
- Monk, W. A., Wilbur, N. M., Allen Curry, R., Gagnon, R., & Faux, R. N. (2013). Linking landscape variables to cold water refugia in rivers. Journal of Environmental Management, 118, 170–176. https://doi.org/10.1016/j.jenvman.2012.12.024
- Perkins, D. M., Yvon-Durocher, G., Demars, B. O., Reiss, J., Pichler, D. E., Friberg, N., Trimmer, M., & Woodward, G. (2012). Consistent temperature dependence of respiration across ecosystems contrasting in thermal history. Global Change Biology, 18(4), 1300–1311. https://doi.org/10.1111/j.1365-2486.2011.02597.x
- Poole, G. C. (2002). Fluvial landscape ecology: Addressing uniqueness within the river discontinuum. Freshwater Biology, 47(4), 641–660. https://doi.org/10.1046/j.1365-2427.2002.00922.x
- Poole, G. C., & Berman, C. H. (2001). An ecological perspective on in-stream temperature: Natural heat dynamics and mechanisms of human-caused thermal degradation. Environmental Management, 27(6), 787–802. https://doi.org/10.1007/s002670010188
- R Core Team. (2016). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/
- Richards, J., Moore, R. D., & Forrest, A. L. (2012). Late-summer thermal regime of a small proglacial lake. Hydrological Processes, 26(18), 2687–2695. https://doi.org/10.1002/hyp.8360
- Schaefer, S. C., & Alber, M. (2007). Temperature controls a latitudinal gradient in the proportion of watershed nitrogen exported to coastal ecosystems. Biogeochemistry, 85(3), 333–346. https://doi.org/10.1007/s10533-007-9144-9
- Scott, M. C., Helfman, G. S., McTammany, M. E., Benfield, E. F., & Bolstad, P. V. (2002). Multiscale influences on physical and chemical stream conditions across Blue Ridge landscapes. JAWRA Journal of the American Water Resources Association, 38(5), 1379–1392. https://doi.org/10.1111/j.1752-1688.2002.tb04353.x
- Somers, L. D., Gordon, R. P., McKenzie, J. M., Lautz, L. K., Wigmore, O., Glose, A., Glas, R., Aubry-Wake, C., Mark, B., Baraer, M., & Condom, T. (2016). Quantifying groundwater–surface water interactions in a proglacial valley, Cordillera Blanca, Peru. Hydrological Processes, 30(17), 2915–2929. https://doi.org/10.1002/hyp.10912
- Stefan, H. G., & Preud'homme, E. B. (1993). Stream temperature estimation from air temperature. JAWRA Journal of the American Water Resources Association, 29(1), 27–45. https://doi.org/10.1111/j.1752-1688.1993.tb01502.x
10.1111/j.1752-1688.1993.tb01502.x Google Scholar
- Torgersen, C. E., Faux, R. N., McIntosh, B. A., Poage, N. J., & Norton, D. J. (2001). Airborne thermal remote sensing for water temperature assessment in rivers and streams. Remote Sensing of Environment, 76(3), 386–398. https://doi.org/10.1016/S0034-4257(01)00186-9
- U.S. Geological Survey. (2016). National Water Information System data available on the World Wide Web (USGS Water Data for the Nation). https://waterdata.usgs.gov/co/nwis/inventory/?site_no=402114105350101. doi: https://doi.org/10.5066/F7P55KJN
- Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37(1), 130–137. https://doi.org/10.1139/f80-017
- Ward, J. V., & Stanford, J. A. (1995). The serial discontinuity concept: Extending the model to floodplain rivers. Regulated Rivers: Research & Management, 10(2-4), 159–168. https://doi.org/10.1002/rrr.3450100211
- Webb, B. W., Hannah, D. M., Moore, R. D., Brown, L. E., & Nobilis, F. (2008). Recent advances in stream and river temperature research. Hydrological Processes, 22(7), 902–918. https://doi.org/10.1002/hyp.6994
- Webb, B. W., & Zhang, Y. (1997). Spatial and seasonal variability in the components of the river heat budget. Hydrological Processes, 11(1), 79–101. https://doi.org/10.1002/(SICI)1099-1085(199701)11:1<79::AID-HYP404>3.0.CO;2-N
- Wotton, R. (1995). Temperature and lake-outlet communities. Journal of Thermal Biology, 20(1), 121–125. https://doi.org/10.1016/0306-4565(94)00042-H
- Wurtsbaugh, W. A., Heredia, N. A., Laub, B. G., Meredith, C. S., Mohn, H. E., Null, S. E., Pluth, D. A., Roper, B. B., Saunders, W. C., Stevens, D. K., Walker, R. H., & Wheeler, K. (2014). Approaches for studying fish production: Do river and lake researchers have different perspectives? Canadian Journal of Fisheries and Aquatic Sciences, 72(1), 149–160. https://doi.org/10.1139/cjfas-2014-0210