Experimental comparison of solar drying based on evacuated tube collector with desiccant drying for dehydrating potato and ginger
Shubham Vyas
Department of Mechanical Engineering, MIT Moradabad, Moradabad, India
Search for more papers by this authorPrashant Singh
Department of Mechanical Engineering, MIT Moradabad, Moradabad, India
Search for more papers by this authorCorresponding Author
Himanshu Agrawal
Department of Mechanical Engineering, RBCET Bareilly, Kareli, India
Correspondence Himanshu Agrawal, Department of Mechanical Engineering, RBCET Bareilly, Kareli, India.
Email: [email protected]
Search for more papers by this authorGopal Vishwakarma
Department of Mechanical Engineering, RBCET Bareilly, Kareli, India
Search for more papers by this authorAvadhesh Yadav
National Institute of Solar Energy, Gurugram, India
Search for more papers by this authorShubham Vyas
Department of Mechanical Engineering, MIT Moradabad, Moradabad, India
Search for more papers by this authorPrashant Singh
Department of Mechanical Engineering, MIT Moradabad, Moradabad, India
Search for more papers by this authorCorresponding Author
Himanshu Agrawal
Department of Mechanical Engineering, RBCET Bareilly, Kareli, India
Correspondence Himanshu Agrawal, Department of Mechanical Engineering, RBCET Bareilly, Kareli, India.
Email: [email protected]
Search for more papers by this authorGopal Vishwakarma
Department of Mechanical Engineering, RBCET Bareilly, Kareli, India
Search for more papers by this authorAvadhesh Yadav
National Institute of Solar Energy, Gurugram, India
Search for more papers by this authorAbstract
In this article, a comparative study of different drying techniques, namely, open sun drying (OSD), desiccant drying, solar drying (SD), and solar drying with desiccant (SDWD) was done for drying potato and ginger. The thermal efficiency and air temperature differences of the solar dryer based on evacuated tube collectors were also examined. The average efficiency of the solar dryer was 29.01%. Average drying rates of OSD, desiccant drying, SD, and SDWD bed are 0.435, 0.435, 0.59, and 0.635 g/min. The moisture content of the potato was reduced from 79.6% to 32.9% by OSD, 32.6% by desiccant drying, 9.6% by SD, and 6.9% by SDWD. The moisture content of the ginger was reduced from its initial value of 82.3%–25.3% by OSD, 25% by desiccant drying, 10.1% by SD, and 3.2% by SDWD. SD assisted with a desiccant bed proved to be the best method for drying vegetables. Drying with desiccants is not feasible for drying in winter and spring seasons of the Indian climate.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
REFERENCES
- 1Sharma VK, Colangelo A, Spagna G. Experimental investigation of different solar dryers suitable for fruit and vegetable drying. Renewable Energy. 1995; 6(4): 413-424. doi:10.1016/0960-1481(94)00075-H
- 2Midilli A. Determination of pistachio drying behaviour and conditions in a solar drying system. Int J Energy Res. 2001; 25(8): 715-725. doi:10.1002/er.715
- 3Bala BK, Mondol MRA, Biswas BK, Das Chowdury BL, Janjai S. Solar drying of pineapple using solar tunnel drier. Renewable Energy. 2003; 28(2): 183-190. doi:10.1016/S0960-1481(02)00034-4
- 4Sreekumar A, Manikantan PE, Vijayakumar KP. Performance of indirect solar cabinet dryer. Energy Convers Manage. 2008; 49(6): 1388-1395. doi:10.1016/j.enconman.2008.01.005
- 5Akbulut A, Durmuş A. Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer. Energy. 2010; 35(4): 1754-1763. from doi:10.1016/j.energy.2009.12.028
- 6Hossain MA, Amer BMA, Gottschalk K. Hybrid solar dryer for quality dried tomato. Drying Technol. 2008; 26(12): 1591-1601. doi:10.1080/07373930802467466
- 7Gatea AA. Performance evaluation of a mixed-mode solar dryer for evaporating moisture in beans. J Agric Biotechnol Sustainable Dev. 2011; 3(4): 65-71.
- 8Yadav A, Bajpai VK. The performance of solar powered desiccant dehumidifier in India: an experimental investigation. Int J Sustainable Eng. 2013; 6(3): 239-257. doi:10.1080/19397038.2012.707252
10.1080/19397038.2012.707252 Google Scholar
- 9Yadav V, Yadav A. Experimental investigation of novel design of solar cooker with dual thermal storage unit based on parabolic dish-type collector. Int J Energy Clean Environ. 2013; 14(4): 295-310. doi:10.1615/InterJEnerCleanEnv.2015011429
10.1615/InterJEnerCleanEnv.2015011429 Google Scholar
- 10Agrawal H, Yadav V, Kumar Y, Yadav A. Comparison of experimental data for sensible and latent heat storage materials for late-evening cooking based on a dish-type solar cooker. Int J Energy Clean Environ. 2014; 15(1): 47-72. doi:10.1615/InterJEnerCleanEnv.2015013791
10.1615/InterJEnerCleanEnv.2015013791 Google Scholar
- 11Sangewar RK. Enhancement of thermal efficiency by using hemispherical protrusions on solar air heaters. Int J Energy Clean Environ. 2014; 15(1): 19-33. doi:10.1615/InterJEnerCleanEnv.2015013238
10.1615/InterJEnerCleanEnv.2015013238 Google Scholar
- 12Dina SF, Ambarita H, Napitupulu FH, Kawai H. Study on effectiveness of continuous solar dryer integrated with desiccant thermal storage for drying cocoa beans. Case Stud Therm Eng. 2015; 5: 32-40. doi:10.1016/j.csite.2014.11.003
- 13Misha S, Mat S, Ruslan MH, Salleh E, Sopian K. Performance of a solar assisted solid desiccant dryer for kenaf core fiber drying under low solar radiation. Sol Energy. 2015; 112: 194-204. doi:10.1016/j.solener.2014.11.029
- 14Misha S, Mat S, Ruslan MH, Salleh E, Sopian K. Performance of a solar-assisted solid desiccant dryer for oil palm fronds drying. Sol Energy. 2016; 132: 415-429. from doi:10.1016/j.solener.2016.03.041
- 15Mehla N, Yadav A. Experimental investigation of a desiccant dehumidifier based on evacuated tube solar collector with a PCM storage unit. Drying Technol. 2017; 35(4): 417-432. doi:10.1080/07373937.2016.1180300
- 16Mennouche D, Boubekri A, Chouicha S, Bouchekima B, Bouguettaia H. Solar drying process to obtain high standard “Deglet-Nour” date fruit. J Food Process Eng. 2017; 40(5): 1-8. doi:10.1111/jfpe.12546
- 17Atalay H, Turhan Çoban M, Kıncay O. Modeling of the drying process of apple slices: application with a solar dryer and the thermal energy storage system. Energy. 2017; 134: 382-391. doi:10.1016/j.energy.2017.06.030
- 18Quansah DA, Woangbah SK, Anto EK, Akowuah EK, Adaramola MS. Techno-economics of solar PV–diesel hybrid power systems for off-grid outdoor base transceiver stations in Ghana. Int J Energy Clean Environ. 2017; 18(1): 61-78. doi:10.1615/InterJEnerCleanEnv.2017019537
10.1615/InterJEnerCleanEnv.2017019537 Google Scholar
- 19Kumar A, Yadav A. Experimental investigation of a desiccant air conditioning system based on solar-powered composite desiccant bed heat exchanger. Int J Energy Clean Environ. 2017; 18(1): 79-97. doi:10.1615/InterJEnerCleanEnv.2017018954
- 20Das BK. Optimal sizing of stand-alone and grid-connected solar PV systems in Bangladesh. Int J Energy Clean Environ. 2020; 21(2): 107-124. doi:10.1615/INTERJENERCLEANENV.2020033438
10.1615/InterJEnerCleanEnv.2020033438 Google Scholar
- 21Qureshi U, Baredar P. Environomical analysis of a standalone modified hybrid photovoltaic thermal system with dual low cost heat transfer media. Int J Energy Clean Environ. 2016; 17(1): 27-37. doi:10.1615/InterJEnerCleanEnv.2016015803
10.1615/InterJEnerCleanEnv.2016015803 Google Scholar
- 22Sukhikh AA, Antanenkova IS, Kuznetsov VN, Mereutsa EV, Ereaihan. Experimental and numerical investigations of heat regeneration process efficiency in a heat pump with a mixture of refrigerants. Int J Energy Clean Environ. 2016; 17(2-4): 209-222. doi:10.1615/InterJEnerCleanEnv.2017019186
10.1615/InterJEnerCleanEnv.2017019186 Google Scholar
- 23Ogueke NV, Njokuocha UJ, Anyanwu EE. Design and measured performance of a photovoltaic thermal collector-powered dryer. Int J Energy Clean Environ. 2017; 18(2): 123-131. doi:10.1615/InterJEnerCleanEnv.2017020424
10.1615/InterJEnerCleanEnv.2017020424 Google Scholar
- 24Ogueke NV, Anyanwu EE. Review of photovoltaic–thermal collectors: an overview of the potential beyond experimental testing. Int J Energy Clean Environ. 2017; 18(3): 243-273. doi:10.1615/InterJEnerCleanEnv.2018020425
10.1615/InterJEnerCleanEnv.2018020425 Google Scholar
- 25Singh G, Gangacharyulu D, Bulasara VK. Experimental investigation of the effect of heat transfer and pressure drop on performance of a flat tube by using water-based Al2O3 nanofluids. Int J Energy Clean Environ. 2018; 19(1-2): 1-17. doi:10.1615/interjenercleanenv.2018020996
10.1615/InterJEnerCleanEnv.2018020996 Google Scholar
- 26Singh PK, Naruka DS, Seng LP. Numerical investigation of flow and heat transfer of nanofluids in a wavy microchannel. Int J Energy Clean Environ. 2018; 19(1-2): 19-35.
10.1615/InterJEnerCleanEnv.2018021099 Google Scholar
- 27Wang J, Chen S, Mu X, Shen S. Thermodynamic analysis of multistage flash distillation application in wastewater treatment. Int J Energy Clean Environ. 2018; 19(1-2): 85-91. doi:10.1615/interjenercleanenv.2018021086
- 28Kamble D, Gawali BS. Analysis of a rectangular microchannel using the R-22 refrigerant in forced convection heat transfer condition. Int J Energy Clean Environ. 2019; 20(1): 1-21. doi:10.1615/InterJEnerCleanEnv.2016015640
10.1615/InterJEnerCleanEnv.2016015640 Google Scholar
- 29Vedrtnam A, Upadhyay MP, Kalauni K. Experimental and theoretical studies of the heat transfer characteristics of the lab-scale sensible heat storage system. Int J Energy Clean Environ. 2019; 20(2): 167-193.
10.1615/InterJEnerCleanEnv.2019025350 Google Scholar
- 30Hussain T, Singh AK, Mittal A, Verma A, Alam Z. Performance evaluation of vapor compression refrigeration system by varying air flow rates in air-cooled and evaporatively cooled condensers. Int J Energy Clean Environ. 2020; 21(1): 1-13.
- 31Al Zyoud A, Othman A, Manasrah A, Abdelhafez EA. Investment analysis of a solar water pumping system in rural areas in Jordan. Int J Energy Clean Environ. 2020; 21(3): 269-281.
10.1615/InterJEnerCleanEnv.2020033565 Google Scholar
- 32de Lemos MJS, Ribeiro RR. Thermal efficiency of solar volumetric receivers using constant and variable fluid properties. Int J Energy Clean Environ. 2021; 22(4): 95-111.
10.1615/InterJEnerCleanEnv.2021036949 Google Scholar
- 33Mehla N, Singh B, Kumar A. Performance prediction of innovative solar air collector (ISAC) with phase change material using the ANN approach. Int J Energy Clean Environ. 2021; 22(5): 65-83.
10.1615/InterJEnerCleanEnv.2021034739 Google Scholar