Novel mixed solar cooker: Experimental, energy, exergy, and economic analysis
Corresponding Author
Assam Benbaha
LEB Laboratory, Department of Electrical Engineering, Faculty of Technology, University of Batna 2, Batna, Algeria
Correspondence Assam Benbaha, LEB Laboratory, Department of Electrical Engineering, Faculty of Technology, University of Batna 2, Batna 05078, Algeria.
Email: [email protected]
Search for more papers by this authorFatiha Yettou
Unité de Recherche Appliquée en Energies Renouvelables, URAER, Centre de Développement des Energies Renouvelables, CDER, Ghardaïa, Algeria
Search for more papers by this authorBoubakeur Azoui
LEB Laboratory, Department of Electrical Engineering, Faculty of Technology, University of Batna 2, Batna, Algeria
Search for more papers by this authorAmor Gama
Unité de Recherche Appliquée en Energies Renouvelables, URAER, Centre de Développement des Energies Renouvelables, CDER, Ghardaïa, Algeria
Search for more papers by this authorNeelam Rathore
Department of Renewable Energy Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur, India
Search for more papers by this authorNarayan Lal Panwar
Department of Renewable Energy Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur, India
Search for more papers by this authorCorresponding Author
Assam Benbaha
LEB Laboratory, Department of Electrical Engineering, Faculty of Technology, University of Batna 2, Batna, Algeria
Correspondence Assam Benbaha, LEB Laboratory, Department of Electrical Engineering, Faculty of Technology, University of Batna 2, Batna 05078, Algeria.
Email: [email protected]
Search for more papers by this authorFatiha Yettou
Unité de Recherche Appliquée en Energies Renouvelables, URAER, Centre de Développement des Energies Renouvelables, CDER, Ghardaïa, Algeria
Search for more papers by this authorBoubakeur Azoui
LEB Laboratory, Department of Electrical Engineering, Faculty of Technology, University of Batna 2, Batna, Algeria
Search for more papers by this authorAmor Gama
Unité de Recherche Appliquée en Energies Renouvelables, URAER, Centre de Développement des Energies Renouvelables, CDER, Ghardaïa, Algeria
Search for more papers by this authorNeelam Rathore
Department of Renewable Energy Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur, India
Search for more papers by this authorNarayan Lal Panwar
Department of Renewable Energy Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur, India
Search for more papers by this authorAbstract
This work focuses on the structure, working, and testing of a new mixed solar cooker using a linear Fresnel collector, evacuated tube and box-type cooker. The low-cost components used in the construction of this cooker can help it satisfy the needs of both urban and rural inhabitants who need steady cooking temperatures above 140°C. A family of five can prepare four meals using this modified solar cooker, which costs about $250. The designed solar cooker was tested by conducting no-load and full-load tests. For the no-load test, the maximum temperature of the absorber plate and oil for the new mixed cooker was recorded as 160.26°C and 172.72°C, respectively. The absorber plate of the new mixed cooker and its oil both reached their highest temperatures during the full-load test at 141.14°C and 157°C, respectively. The energy efficiency of the new cooker is 58.776%, while its exergy efficiency is 13%. The heat transfer coefficient increased to 100.16 W/m² °C. This cooker provides an additional time savings of 60 min. An improvement of 27.5% in the highest temperature reached was seen when the developed cooker's performance was compared with those reported in the literature. Additionally, the new cooker's heat-storing capability enables up to 3 h of autonomy. The Levelized Cost of Cooking a Meal for the innovative mixed solar cooker is $0.034 per meal.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
REFERENCES
- 1Barbir F. Transition to renewable energy systems with hydrogen as an energy carrier. Energy. 2009; 34(3): 308-312.
- 2Chand V. Conservation of energy resources for sustainable development: a big issue and challenge for future. environmental concerns and sustainable development. Air Water Energy Resour. 2020; 1: 293-315.
- 3Bhave AG, Thakare KA. Development of a solar thermal storage cum cooking device using salt hydrate. Sol Energy. 2018; 171: 784-789.
- 4Sansaniwal SK, Sharma V, Mathur J. Energy and exergy analyses of various typical solar energy applications: a comprehensive review. Renewable Sustainable Energy Rev. 2018; 82: 1576-1601.
- 5Hussein HMS, El-Ghetany HH, Nada SA. Experimental investigation of novel indirect solar cooker with indoor PCM thermal storage and cooking unit. Energy Convers Manage. 2008; 49(8): 2237-2246.
- 6Kumar N, Agravat S, Chavda T, Mistry HN. Design and development of efficient multipurpose domestic solar cookers/dryers. Renewable Energy. 2008; 33(10): 2207-2211.
- 7Cuce PM. Box type solar cookers with sensible thermal energy storage medium: a comparative experimental investigation and thermodynamic analysis. Sol Energy. 2018; 166: 432-440.
- 8Al-Nehari HA, Mohammed MA, Odhah AA, et al. Experimental and numerical analysis of tiltable box-type solar cooker with tracking mechanism. Renewable Energy. 2021; 180: 954-965.
- 9Saxena A, Cuce E, Tiwari GN, Kumar A. Design and thermal performance investigation of a box cooker with flexible solar collector tubes: an experimental research. Energy. 2020; 206:118144. doi:10.1016/j.energy.2020.118144
- 10Vengadesan E, Senthil R. Experimental investigation of the thermal performance of a box-type solar cooker using a finned cooking vessel. Renewable Energy. 2021; 171: 431-446.
- 11Coccia G, Di Nicola G, Tomassetti S, Pierantozzi M, Chieruzzi M, Torre L. Experimental validation of a high-temperature solar box cooker with a solar-salt-based thermal storage unit. Sol Energy. 2018; 170: 1016-1025.
- 12Saxena A, Varun SP, Pandey SP, Srivastav G. A thermodynamic review on solar box type cookers. Renewable Sustainable Energy Rev. 2011; 15(6): 3301-3318.
- 13Kumar A, Saxena A, Pandey SD, Gupta A. Cooking performance assessment of a phase change material integrated hot box cooker. Environ Sci Pollut Res. 2023; 30: 1-16.
- 14Saxena A, Norton B, Goel V, Singh DB. Solar cooking innovations, their appropriateness, and viability. Environ Sci Pollut Res. 2022; 29(39): 58537-58560.
- 15Saxena A, Agarwal N. Performance characteristics of a new hybrid solar cooker with air duct. Sol Energy. 2018; 159: 628-637.
- 16Saxena A, Joshi SK, Gupta P, et al. An experimental comparative analysis of the appropriateness of different sensible heat storage materials for solar cooking. J Energy Storage. 2023; 61:106761.
- 17Kumar A, Saxena A, Pandey SD, Joshi SK. Design and performance characteristics of a solar box cooker with phase change material: a feasibility study for Uttarakhand region, India. Appl Therm Eng. 2022; 208:118196.
- 18El Moussaoui N, Talbi S, Atmane I, et al. Feasibility of a new design of a parabolic trough solar thermal cooker (PSTC). Sol Energy. 2020; 201: 866-871. doi:10.1016/j.solener.2020.03.079
- 19Kumar R, Adhikari RS, Garg HP, Kumar A. Thermal performance of a solar pressure cooker based on evacuated tube solar collector. Appl Therm Eng. 2001; 21(16): 1699-1706. doi:10.1016/S1359-4311(01)00018-7
- 20Singh H, Gagandeep K, Saini K, Yadav A. Experimental comparison of different heat transfer fluid for thermal performance of a solar cooker based on evacuated tube collector. Environ Dev Sustainability. 2015; 17: 497-511. doi:10.1007/s10668-014-9556-3
- 21Farooqui SZ. Impact of load variation on the energy and exergy efficiencies of a single vacuum tube based solar cooker. Renewable Energy. 2015; 77: 152-158.
- 22Kanyowa T, Victor Nyakujara G, Ndala E, Das S. Performance analysis of Scheffler dish type solar thermal cooking system cooking 6000 meals per day. Sol Energy. 2021; 218: 563-570.
- 23Farooqui SZ. A gravity based tracking system for box type solar cookers. Sol Energy. 2013; 92: 62-68. doi:10.1016/j.solener.2013.02.024
- 24Terres H, Chávez S, Lizardi A, et al. First and second law efficiencies in the cooking process of eggplant using a solar cooker box-type. J Phys: Conf Ser. 2015; 582(1):012024.
10.1088/1742-6596/582/1/012024 Google Scholar
- 25Adewole BZ, Popoola OT, Asere AA. Thermal performance of a reflector based solar box cooker implemented in Ile-Ife, Nigeria. Int J Energy Eng. 2015; 5(5): 95-101. doi:10.5923/j.ijee.20150505.02
- 26Abd-Elhady MS, Abd-Elkerim ANA, Ahmed SA, Halim MA, Abu-Oqual A. Study the thermal performance of solar cookers by using metallic wires and nanographene. Renewable Energy. 2020; 153: 108-116. doi:10.1016/j.renene.2019.09.037
- 27Bellos E, Tzivanidis C, Papadopoulos A. Optical and thermal analysis of a linear Fresnel reflector operating with thermal oil, molten salt and liquid sodium. Appl Therm Eng. 2018; 133: 70-80.
- 28Holman JP, Heat transfer. 5th ed. McGraw-Hill; 1981.
- 29Le Fevere EJ, Ede AJ. Laminar free convection from a vertical plane surface. Proceedings of the 9th Congress on Applied Mechanics Brussels; 1956;168: Paper 1167.
- 30Anilkumar BC, Maniyeri R, Anish S. Design, fabrication and performance assessment of a solar cooker with optimum composition of heat storage materials. Environ Sci Pollut Res. 2021; 28: 63629-63637. doi:10.1007/S11356-020-11024-3/TABLES/4.
- 31Samdarshi SK, Mullick SC. Analytical equation for the top heat loss factor of a flat-plate collector with double glazing. J Sol Energy Eng. 1991; 113: 117-122. doi:10.1115/1.2929955.
- 32Guidara Z, Souissi M, Morgenstern A, Maalej A. Thermal performance of a solar box cooker with outer reflectors: numerical study and experimental investigation. Sol Energy. 2017; 158: 347-359. doi:10.1016/J.SOLENER.2017.09.054
- 33Khalifa AMA, Taha MMA, Akyurt M. Solar cookers for outdoors and indoors. Energy. 1985; 10: 819-829. doi:10.1016/0360-5442(85)90115-X
- 34Olwi I, Khalifa A. Numerical modeling and experimental testing of a solar grill. J Sol Energy Eng. 1993; 115: 5-10. doi:10.1115/1.2930025
- 35Tawfik MA, Sagade AA, El-Sebaii AA, Khallaf AM, Hanan M, Abd Allah WE. Enabling sustainability in the decentralized energy sector through a solar cooker augmented with a bottom parabolic reflector: performance modelling and 4E analyses. Energy. 2023; 287:129692.
- 36Kumar N, Vishwanath G, Gupta A. An exergy based unified test protocol for solar cookers of different geometries. Renewable Energy. 2012; 44: 457-462.
- 37Petela R. Exergy of undiluted thermal radiation. Sol Energy. 2003; 74: 469-488.
- 38Petela R. Engineering thermodynamics of thermal radiation for solar power utilization. McGraw-Hill; 2010.
- 39Sardarabadi M, Passandideh-Fard M, Zeinali Heris S. Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units). Energy. 2014; 66: 264-272. doi:10.1016/j.energy.2014.01.102.
- 40Farzanehnia A, Khatibi M, Sardarabadi M, Passandideh-Fard M. Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Convers Manage. 2019; 179: 314-325. doi:10.1016/j.enconman.2018.10.037.
- 41Getnet MY, Gunjo DG, Sinha DK. Experimental investigation of thermal storage integrated indirect solar cooker with and without reflectors. Results Eng. 2023; 18:101022. doi:10.1016/j.rineng.2023.101022
10.1016/j.rineng.2023.101022 Google Scholar
- 42Asmelash H, Bayray M, Kimambo C, Gebray P, Sebbit A. Performance test of parabolic trough solar cooker for indoor cooking. Momona Ethiop J Sci. 2014; 6(2): 39-54.
10.4314/mejs.v6i2.109621 Google Scholar
- 43Esen M. Thermal performance of a solar cooker integrated vacuum-tube collector with heat pipes containing different refrigerants. Sol Energy. 2004; 76(6): 751-757.
- 44Chaudhary R, Yadav A. Experimental investigation of solar cooking system based on evacuated tube solar collector for the preparation of concentrated sugarcane juice used in jaggery making. Environ Dev Sustainability. 2021; 23: 647-663.
- 45Dianda B, Maurice TS. KY. Experimental investigation of a solar parabolic trough cooker. Int J Curr Res Key Words. 2009; 11: 1869-1874.
- 46Vaishya JS, Tripathi TC, Singh D, Bhawalkar RH, Hegde MS. A hot box solar cooker: performance analysis and testing. Energy Convers Manage. 1985; 25(3): 373-379. doi:10.1016/0196-8904(85)90057-3
- 47Nahar NM. Performance and testing of an improved hot box solar cooker. Energy Convers Manage. 1990; 30(1): 9-16. doi:10.1016/0196-8904(90)90051-Y
- 48Harmim A, Belhamel M, Boukar M, Amar M. Experimental investigation of a box-type solar cooker with a finned absorber plate. Energy. 2010; 35(9): 3799-3802. doi:10.1016/j.energy.2010.05.032
- 49Negi BS, Purohit I. Experimental investigation of a box type solar cooker employing a non-tracking concentrator. Energy Convers Manage. 2005; 46(4): 577-604. doi:10.1016/j.enconman.2004.04.005
- 50Mahavar S, Verma M, Rajawat P, Sengar N, Dashora P. Novel solar cookers: suitable for small families. Int J Sustainable Energy. 2013; 32(6): 574-586. doi:10.1080/14786451.2012.734824
10.1080/14786451.2012.734824 Google Scholar
- 51Kumar S. Estimation of design parameters for thermal performance evaluation of box-type solar cooker. Renewable Energy. 2005; 30(7): 1117-1126. doi:10.1016/j.renene.2004.09.004.
- 52Mirdha US, Dhariwal SR. Design optimization of solar cooker. Renewable Energy. 2008; 33(3): 530-544. doi:10.1016/j.renene.2007.04.009.
- 53Cuce PM, Kolayli S, Cuce E. Enhanced performance figures of solar cookers through latent heat storage and low-cost booster reflectors. Int J Low-Carbon Technol. 2020; 15(3): 427-433.
- 54Cuce E, Cuce PM. Theoretical investigation of hot box solar cookers having conventional and finned absorber plates. Int J Low-Carbon Technol. 2015; 10(3): 238-245.
- 55Saini P, Pandey S, Goswami S, Dhar A, Mohamed ME, Powar S. Experimental and numerical investigation of a hybrid solar thermal-electric powered cooking oven. Energy. 2023; 280:128188.
- 56Fuso Nerini F, Ray C, Boulkaid Y. The cost of cooking a meal. The case of Nyeri County, Kenya. Environ Res Lett. 2017; 12(6):065007. doi:10.1088/1748-9326/aa6fd0
- 57Tawfik MA, Sagade AA, Palma-Behnke R, Allah WEA, El-Shal HM. Performance evaluation of solar cooker with tracking type bottom reflector retrofitted with a novel design of thermal storage incorporated absorber plate. J Energy Storage. 2022; 51:104432. doi:10.1016/j.est.2022.104432
- 58Motwani K, Patel J. Cost analysis of solar parabolic trough collector for cooking in Indian hostel—a case study. Int J Ambient Energy. 2022; 43(1): 561-567. doi:10.1080/01430750.2019.1653968
- 59Herez A, Ramadan M, Khaled M. Review on solar cooker systems: economic and environmental study for different Lebanese scenarios. Renewable Sustainable Energy Rev. 2018; 81: 421-432. doi:10.1016/j.rser.2017.08.021
- 60Coccia G, Aquilanti A, Tomassetti S, Ishibashi A, Di Nicola G. Design, manufacture and test of a low-cost solar cooker with high-performance light-concentrating lens. Sol Energy. 2021; 224: 1028-1039. doi:10.1016/j.solener.2021.06.025
- 61Ebenhoch R, Matha D, Marathe S, Muñoz PC, Molins C. Comparative levelized cost of energy analysis. Energy Procedia. 2015; 80: 108-122. doi:10.1016/j.egypro.2015.11.413
- 62Boutelhig A, Bakelli Y, Hadj Mahammed I, Hadj Arab A. Performances study of different PV powered DC pump configurations for an optimum energy rating at different heads under the outdoor conditions of a desert area. Energy. 2012; 39(1): 33-39. doi:10.1016/j.energy.2011.10.016
- 63Farooqui SZ. Angular optimization of dual booster mirror solar cookers—tracking free experiments with three different aspect ratios. Sol Energy. 2015; 114: 337-348.
- 64Mullick S. Top heat loss factor of double glazed box type solar cooker from indoor experiments. Energy. 1997; 22: 559-565.
- 65Cuce E, Cuce PM. Theoretical investigation of hot box solar cookers having conventional and finned absorber plates. Int J Low Carbon Technol. 2013; 10: 238-245.
- 66Mahavar S, Sengar N, Dashora P. Analytical model for electric back-up power estimation of solar box type cookers. Energy. 2017; 134: 871-881.
- 67Sethi VP, Pal DS, Sumathy K. Performance evaluation and solar radiation capture of optimally inclined box type solar cooker with parallelepiped cooking vessel design. Energy Convers Manage. 2014; 81: 231-241.
- 68Mishra RS, Sabberwal Prakash SPJ. Evaluation of solar cooker thermal performance using different insulating materials. Int J Energy Res. 1984; 8: 393-396.
- 69Palanikumar G, Shanmugan S, Chithambaram V, et al. Thermal investigation of a solar box-type cooker with nanocomposite phase change materials using flexible thermography. Renewable Energy. 2021; 178: 260-282.
- 70Garg HP, Prakash J. Solar energy—fundamentals and applications. Tata McGraw-Hill; 2009.
- 71Weldu A, Zhao L, Deng S, et al. Performance evaluation on solar box cooker with reflector tracking at optimal angle under Bahir Dar climate. Sol Energy. 2019; 180: 664-677.
- 72Prabu AS, Chithambaram V, Shanmugan S, et al. The performance enhancement of solar cooker integrated with photovoltaic module and evacuated tubes using ZnO/Acalypha indica leaf extract: response surface study analysis. Environ Sci Pollut Res. 2023; 30(6): 15082-15101.
- 73Ademe Z, Hameer S. Design, construction and performance evaluation of a box type solar cooker with a glazing wiper mechanism. AIMS Energy. 2018; 6: 146-169. doi:10.3934/energy.2018.1.146