Excimer-Based On-Off Bis(pyreneamide) Macrocyclic Chemosensors
Mahesh Vishe
Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorTimothée Lathion
Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorSimon Pascal
Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorOleksandr Yushchenko
Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorAlexandre Homberg
Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorElodie Brun
Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorEric Vauthey
Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorClaude Piguet
Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorJérôme Lacour
Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorMahesh Vishe
Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorTimothée Lathion
Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorSimon Pascal
Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorOleksandr Yushchenko
Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorAlexandre Homberg
Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorElodie Brun
Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorEric Vauthey
Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorClaude Piguet
Department of Inorganic and Analytical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorJérôme Lacour
Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
Search for more papers by this authorAbstract
A series of bis(pyreneamide) macrocycles, synthesized in two steps from THF, THP, oxepane and 1,4-dioxane, are tested as chemosensors for a large range of mono-, di- and trivalent cations. In their native states, these macrocycles exhibit a strong excimer fluorescence that is quenched upon the addition of the metal ions (alkaline, alkaline earth, p-, d-, and f-block metals). UV-Vis spectrophotometric titrations, cyclic voltammetry, excimer fluorescence quenching, and transient absorption spectroscopy experiments helped characterize the On-Off changes occurring upon binding and demonstrate that the highest stability constants are obtained with divalent cations Ca2+ and Ba2+ specifically.
Supporting Information
Supporting information for this article is available on the WWW under https://doi.org/10.1002/hlca.201700265.
Filename | Description |
---|---|
hlca201700265-sup-0001-Supinfo.pdfPDF document, 3.5 MB |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. Yin, Y. Hu, J. Yoon, ‘Fluorescent Probes and Bioimaging: Alkali Metals, Alkaline Earth Metals and pH’, Chem. Soc. Rev. 2015, 44, 4619 – 4644.
- 2B. Valeur, I. Leray, ‘Design Principles of Fluorescent Molecular Sensors for Cation Recognition’, Coord. Chem. Rev. 2000, 205, 3 – 40.
- 3L. Prodi, F. Bolletta, M. Montalti, N. Zaccheroni, ‘Luminescent Chemosensors for Transition Metal Ions’, Coord. Chem. Rev. 2000, 205, 59 – 83.
- 4M. H. Keefe, K. D. Benkstein, J. T. Hupp, ‘Luminescent Sensor Molecules Based on Coordinated Metals: A Review of Recent Developments’, Coord. Chem. Rev. 2000, 205, 201 – 228.
- 5C. Bargossi, M. C. Fiorini, M. Montalti, L. Prodi, N. Zaccheroni, ‘Recent Developments in Transition Metal Ion Detection by Luminescent Chemosensors’, Coord. Chem. Rev. 2000, 208, 17 – 32.
- 6J. F. Callan, A. P. de Silva, D. C. Magri, ‘Luminescent Sensors and Switches in the Early 21st Century’, Tetrahedron 2005, 61, 8551 – 8588.
- 7A. J. Bryan, A. P. de Silva, S. A. De Silva, R. A. D. D. Rupasinghe, K. R. A. S. Sandanayake, ‘Photo-Induced Electron Transfer as a General Design Logic for Fluorescent Molecular Sensors for Cations’, Biosensors 1989, 4, 169 – 179.
- 8B. Wang, E. V. Anslyn, ‘ Chemosensors: Principles, Strategies, and Applications’, John Wiley & Sons, 2011.
10.1002/9781118019580 Google Scholar
- 9A. P. Demchenko, ‘ Introduction to Fluorescence Sensing’, Springer Netherlands, 2009.
10.1007/978-1-4020-9003-5 Google Scholar
- 10F. M. Winnik, ‘Photophysics of Preassociated Pyrenes in Aqueous Polymer Solutions and in Other Organized Media’, Chem. Rev. 1993, 93, 587 – 614.
- 11J. Lou, T. A. Hatton, P. E. Laibinis, ‘Fluorescent Probes for Monitoring Temperature in Organic Solvents’, Anal. Chem. 1997, 69, 1262 – 1264.
- 12C. J. Broan, ‘A ‘Molecular Dosimeter’ which Shows a Predictable and Reproducible Change in Fluorescence Spectrum on Exposure to Ionizing Radiations’, Chem. Commun. 1996, 699 – 700.
- 13S. K. Kim, J. H. Bok, R. A. Bartsch, J. Y. Lee, J. S. Kim, ‘A Fluoride-Selective PCT Chemosensor Based on Formation of a Static Pyrene Excimer’, Org. Lett. 2005, 7, 4839 – 4842.
- 14S. Karuppannan, J.-C. Chambron, ‘Supramolecular Chemical Sensors Based on Pyrene Monomer-Excimer Dual Luminescence’, Chem. Asian J. 2011, 6, 964 – 984.
- 15Y. Suzuki, T. Morozumi, H. Nakamura, M. Shimomura, T. Hayashita, R. A. Bartsh, ‘New Fluorimetric Alkali and Alkaline Earth Metal Cation Sensors Based on Noncyclic Crown Ethers by Means of Intramolecular Excimer Formation of Pyrene’, J. Phys. Chem. B 1998, 102, 7910 – 7917.
- 16J. Li, D. Yim, W.-D. Jang, J. Yoon, ‘Recent Progress in the Design and Applications of Fluorescence Probes Containing Crown Ethers’, Chem. Soc. Rev. 2017, 46, 2437 – 2458.
- 17A. Swidan, C. L. B. Macdonald, ‘Polyether Complexes of Groups 13 and 14’, Chem. Soc. Rev. 2016, 45, 3883 – 3915.
- 18G. W. Gokel, W. M. Leevy, M. E. Weber, ‘Crown Ethers: Sensors for Ions and Molecular Scaffolds for Materials and Biological Models’, Chem. Rev. 2004, 104, 2723 – 2750.
- 19R. Joseph, C. P. Rao, ‘Ion and Molecular Recognition by Lower Rim 1,3-Di-Conjugates of Calix[4]arene as Receptors’, Chem. Rev. 2011, 111, 4658 – 4702.
- 20M. Kumar, A. Dhir, V. Bhalla, ‘On–Off Switchable Binuclear Chemosensor Based on Thiacalix[4]crown Armed with Pyrene Moieties’, Eur. J. Org. Chem. 2009, 4534 – 4540.
- 21A. Ikeda, S. Shinkai, ‘Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding’, Chem. Rev. 1997, 97, 1713 – 1734.
- 22D. Diamond, M. A. McKervey, ‘Calixarene-Based Sensing Agents’, Chem. Soc. Rev. 1996, 25, 15 – 24.
- 23F. Fages, B. Bodenant, T. Weil, ‘Fluorescent, Siderophore-Based Chelators. Design and Synthesis of a Trispyrenyl Trishydroxamate Ligand, an Intramolecular Excimer-Forming Sensing Molecule Which Responds to Iron(III) and Gallium(III) Metal Cations’, J. Org. Chem. 1996, 61, 3956 – 3961.
- 24C. Monahan, ‘Fluorescence Sensing Due to Allosteric Switching of Pyrene Functionalized cis-Cyclohexane-1,3-Dicarboxylate’, Chem. Commun. 1998, 431 – 432.
- 25C. Lodeiro, J. C. Lima, A. J. Parola, J. S. Seixas de Melo, J. L. Capelo, B. Covelo, A. Tamayo, B. Pedras, ‘Intramolecular Excimer Formation and Sensing Behavior of New Fluorimetric Probes and Their Interactions with Metal Cations and Barbituric Acids’, Sens. Actuators, B 2006, 115, 276 – 286.
10.1016/j.snb.2005.09.010 Google Scholar
- 26X.-L. Ni, X. Zeng, C. Redshaw, T. Yamato, ‘Ratiometric Fluorescent Receptors for Both Zn2+ and H2PO4– Ions Based on a Pyrenyl-Linked Triazole-Modified Homooxacalix[3]arene: A Potential Molecular Traffic Signal with an R-S Latch Logic Circuit’, J. Org. Chem. 2011, 76, 5696 – 5702.
- 27N.-J. Jeon, B.-J. Ryu, K.-C. Nam, ‘Pb2+ On-Off Switchable 1,3-Alternate Calix[4]arene Chemosensor Containing Urea and Pyrene Moieties’, Bull. Kor. Chem. Soc. 2012, 33, 3129 – 3132.
- 28M. Zhao, X. Zhou, J. Tang, Z. Deng, X. Xu, Z. Chen, X. Li, L. Yang, L.-J. Ma, ‘Pyrene Excimer-Based Fluorescent Sensor for Detection and Removal of Fe3+ and Pb2+ from Aqueous Solutions’, Spectrochim. Acta, Part A 2017, 173, 235 – 240.
- 29S. K. Kim, S. H. Lee, J. Y. Lee, J. Y. Lee, R. A. Bartsch, J. S. Kim, ‘An Excimer-Based, Binuclear, On−Off Switchable Calix[4]crown Chemosensor’, J. Am. Chem. Soc. 2004, 126, 16499 – 16506.
- 30J. K. Choi, S. H. Kim, J. Yoon, K.-H. Lee, R. A. Bartsch, J. S. Kim, ‘A PCT-Based, Pyrene-Armed Calix[4]crown Fluoroionophore’, J. Org. Chem. 2006, 71, 8011 – 8015.
- 31J. Xie, M. Ménand, S. Maisonneuve, R. Métivier, ‘Synthesis of Bispyrenyl Sugar-Aza-Crown Ethers as New Fluorescent Molecular Sensors for Cu(II)’, J. Org. Chem. 2007, 72, 5980 – 5985.
- 32Z. Jarolímová, M. Vishe, J. Lacour, E. Bakker, ‘Potassium Ion-Selective Fluorescent and pH Independent Nanosensors Based on Functionalized Polyether Macrocycles’, Chem. Sci. 2016, 7, 525 – 533.
- 33D. Poggiali, A. Homberg, T. Lathion, C. Piguet, J. Lacour, ‘Kinetics of Rh(II)-Catalyzed α-Diazo-β-ketoester Decomposition and Application to the [3+6+3+6] Synthesis of Macrocycles on a Large Scale and at Low Catalyst Loadings’, ACS Catal. 2016, 6, 4877 – 4881.
- 34M. Vishe, R. Hrdina, A. I. Poblador-Bahamonde, C. Besnard, L. Guénée, T. Bürgi, J. Lacour, ‘Remote Stereoselective Deconjugation of α, β-Unsaturated Esters by Simple Amidation Reactions’, Chem. Sci. 2015, 6, 4923 – 4928.
- 35M. Vishe, R. Hrdina, L. Guénée, C. Besnard, J. Lacour, ‘One-Pot Multi-Component Synthesis and Solid State Structures of Functionally Rich Polyether Macrocycles’, Adv. Synth. Catal. 2013, 355, 3161 – 3169.
- 36W. Zeghida, C. Besnard, J. Lacour, ‘Rhodium(II)-Catalyzed One-Pot Four-Component Synthesis of Functionalized Polyether Macrocycles at High Concentration’, Angew. Chem. Int. Ed. 2010, 49, 7253 – 7256.
- 37S. Sinn, F. Biedermann, M. Vishe, A. Aliprandi, C. Besnard, J. Lacour, L. De Cola, ‘A Ratiometric Luminescent Switch Based on Platinum Complexes Tethered to a Crown-Ether Scaffold’, ChemPhysChem 2016, 17, 1829 – 1834.
- 38L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini, A. Vacca, ‘Hyperquad Simulation and Speciation (HySS): A Utility Program for the Investigation of Equilibria Involving Soluble and Partially Soluble Species’, Coord. Chem. Rev. 1999, 184, 311 – 318.
- 39E. Müller, C. Piguet, G. Bernardinelli, A. F. Williams, ‘2,2’-Bis(6-(2,2’-bipyridyl))biphenyl (TET), a Sterically Constricted Tetradentate Ligand: Structures and Properties of It's Complexes with Copper(I) and Copper(II)’, Inorg. Chem. 1988, 27, 849 – 855.
- 40B. Daly, J. Ling, A. P. de Silva, ‘Current Developments in Fluorescent PET (Photoinduced Electron Transfer) Sensors and Switches’, Chem. Soc. Rev. 2015, 44, 4203 – 4211.
- 41P. Foggi, L. Pettini, I. Santa, R. Righini, S. Califano, ‘Transient Absorption and Vibrational Relaxation Dynamics of the Lowest Excited Singlet State of Pyrene in Solution’, J. Phys. Chem. 1995, 99, 7439 – 7445.
- 42W. Heinzelmann, H. Labhart, ‘Triplet-Triplet Spectra and Triplet Quantum Yields of Some Aromatic Hydrocarbons in Liquid Solution’, Chem. Phys. Lett. 1969, 4, 20 – 24.
- 43A. Tsuchida, T. Ikawa, T. Tomie, M. Yamamoto, ‘Intramolecular Pyrene Excimer Formation of 1,3-Dipyrenylpropanes with Full and Partial Ring Overlaps’, J. Phys. Chem. 1995, 99, 8196 – 8199.
- 44T. Shida, ‘ Electronic Absorption Spectra of Radical Ions’, Vol. 34, Elsevier, Amsterdam, 1988.
- 45H. Gampp, M. Maeder, C. J. Meyer, A. D. Zuberbühler, ‘Calculation of Equilibrium Constants from Multiwavelength Spectroscopic Data – III: Model-Free Analysis of Spectrophotometric and ESR Titrations’, Talanta 1985, 32, 1133 – 1139.
- 46V. V. Pavlishchuk, A. W. Addison, ‘Conversion Constants for Redox Potentials Measured Versus Different Reference Electrodes in Acetonitrile Solutions at 25°C’, Inorg. Chim. Acta 2000, 298, 97 – 102.
- 47N. G. Connelly, W. E. Geiger, ‘Chemical Redox Agents for Organometallic Chemistry’, Chem. Rev. 1996, 96, 877 – 910.
- 48J. A. Bard, L. R. Faulkner, ‘ Electrochemical Methods: Fundamentals and Applications’, 2nd Edn., John Wiley & Sons, New York, 2001.
- 49B. Lang, S. Mosquera-Vázquez, D. Lovy, P. Sherin, V. Markovic, E. Vauthey, ‘Broadband Ultraviolet-Visible Transient Absorption Spectroscopy in the Nanosecond to Microsecond Time Domain with Sub-Nanosecond Time Resolution’, Rev. Sci. Instrum. 2013, 84, 073107.