1 INTRODUCTION
Food losses are a major concern worldwide at the moment, as the world's population continues to grow, and nearly one-third of all food produced for human consumption is either lost or wasted (FAO, 2011). As pathogenic microorganisms grow and lipid oxidation increases, the shelf life, safety, and quality of food are reduced (Campêlo et al., 2019). When considering food types, these losses correspond to 40%–50% of root crops, fruits, and vegetables; 35% of fish and seafood; 30% of cereals; and 20% of meat, oil seed, and dairy products (FAO, 2017).
The food industry is under significant strain as a result of the use of synthetic food additives such as artificial preservatives and antibacterial physical treatments that extend the shelf life of food by preventing bacterial growth. Today, consumers demand ready-to-eat, natural, microbiologically safe, and organic foods. Even short shelf life foods require special protection against bacterial contamination during their processing, storage, and transportation (Gutiérrez-del-Río et al., 2018).
Several food preservation methods are known, including traditional: drying, freezing, cooling, and pasteurization and advanced technologies, such as chemical processing, irradiation, high-pressure technology, hurdle engineering, and nanotechnology. In addition, other procedures such as planting, harvesting, packaging, storing, and transporting are performed in a way to account for food preservation requirements (Amit et al., 2017; Bajpai et al., 2018; Msagati, 2013).
Living organisms, including plants, herbs, spice plants, animals, and microorganisms, produce a wide variety of secondary metabolites, such as terpenes, saponins, phenolic compounds, flavonoids, nitrogen- and sulfur-containing compounds, thiosulfinates, and glucosinolates that exhibit antioxidative and antimicrobial activities. Because of these properties, they have been used as preservatives to replace artificial supplements and to increase the shelf life of a variety of foods or foodstuffs. In addition, these compounds have other valuable features, such as flavoring properties, etc., so they can be considered multifunctional (Amit et al., 2017; Campêlo et al., 2019; Msagati, 2013).
The present study reviews some Mongolian natural plants with antioxidant, antibacterial, and antifungal properties that can be used as food preservatives. There are 3160 flowering plant species registered, 1100 of which are medicinal plants used in Mongolian traditional medicine (Magsar et al., 2018). The herbal plants of Mongolia contain a variety of secondary metabolites, including tannins, dyes, coumarins, flavonoids, alkaloids, saponins, vitamins, essential oils, and alkaloids (Magsar et al., 2017).
Medicinal plants and spices have been used as therapeutics and food preservatives since antiquity worldwide, and there are some recognized ancient writings that record plant usage from a historical context. Traditional Asian medicines, particularly Chinese, Tibetan, and Ayurvedic medicine, are well known throughout the world and are used as alternative or complementary medicines (El-Sayed & Youssef, 2019). The Mongolian Traditional Medicine originated from Mongolian, Tibetan, and Ayurvedic medicine. Following a period of stagnation, scientific research into traditional medicine has been gradually evolving (Pitschmann et al., 2013). The field had resumed by Soviet Russian scientists. Medicinal herbs were no exception.
The country is located at the crossroads of two major floristic regions of the world, the Siberian taiga and the Central Asian steppe and desert, and its topography encompasses a wide range of vegetation zones, including alpine, taiga, steppe, wetland, and desert. Its climate is also extreme, with temperatures ranging from +45°C to −45°C. Mongolian plants had to be adaptable in order to survive in these severe conditions, which required the production of various metabolites, which are the main ingredients in traditional medicines. In recent years, phytochemical studies on traditional medicinal plants used by Mongol nomadic have been conducted in Mongolia. However, phytochemical findings are preliminary and not comprehensive. The gathering and analysis of Mongolian folk medicinal botanical knowledge have grown in importance. As of 2013, 11 traditional herbal products had been officially approved, and many unregistered medicinal plants were widely used in our healthcare system (Pitschmann et al., 2013). For example, Achillea asiatica Serg., Dianthus versicolor Fisch ex Link., Euphorbia pallasii Turcz. ex Ledeb, Lilium pumilum Delile, and Saussurea amara (L.) DC are all used in Traditional Mongolian Medicine to treat liver diseases. To date, medicinal and food plant research refers to the development of new products or alternative applications in the pharmaceutical and food industries (Gonchig et al., 2008).
2 ANTIOXIDANTS
The diversity of plant metabolites and their chemical structures, especially flavonoids, is associated with a wide variety of their biological activities. Their hydroxyl groups are efficient at scavenging free radicals, thus interrupting oxidative chain reaction. This makes these compounds powerful antioxidants (Gharras, 2009). Antioxidants support cellular defense mechanisms by reducing the risk of oxidative stress (Nimse & Pal, 2015). Aside from their enzymatic vs. nonenzymatic activity, antioxidants can be classified into several groups based on their activity, solubility in water/organic solvents, and size (low and high molecular; Nimse & Pal, 2015). There are five kinds of natural antioxidants: free radical terminators, metal chelators, singlet oxygen quenchers, oxygen scavengers, and antioxidant regulators (Carocho et al., 2015; Mathew & Abraham, 2006). The wide range of antioxidants is derived from a range of spice sources such as phenolic acids (gallic acid and caffeic acid), flavonoids (quercetin and kaempferol), phenolic diterpenes (carnosic acid and carnosol), and volatile essential oils (thymol and menthol; Shan et al., 2005). Some studies indicate that antioxidative activity of polyphenols is greater than that of synthetic antioxidants, such as BHA (butylated hydroxyanisole) and BHT (butylated hydroxytoluene). Even though natural antioxidants inhibit oxidation stress, their antioxidant potential depends on many other factors, such as food composition, matrix type (emulsion, foam, aqueous, and protein), the presence of other constituents, and environmental properties (ionic strength and pH; Brewer, 2011).
In Mongolia, Carum carvi L. is a wildly grown as a medicinal herb and vegetable. The previous studies revealed its antioxidant characteristics based on chemical compositions including monoterpene alcohols, linalool, carvacrol, carvone, limonene, anethole, estragole, flavonoids, and other polyphenolic compounds in caraway oil and aqueous extracts from roots (Agrahari & Singh, 2014). The major compounds in Mongolian caraway were found to be (S)-(+)-carvone (up to 65%) and (R)-(+)-limonene (up to 50%), with minor compounds also detected. It is an ingredient of the various traditional prescriptions and is used to treat nervous diseases, tumors, eye diseases, bronchial phlegm, inflammation, and stomach disorders. In addition, the antioxidant activity was found in some local medicinal plants, including Chiazospermum erectum Bennh (total alkaloid content, not less than 0.6%), which is used to treat typhoid fever, poisoning, and blood fever, as well as to relieve pain, reduce temperature, and expel bile. Dianthus superbus L. (total flavonoid content, not less than 1.2%), Gentiana barbata Froel (total alkaloid content 0.2%), Hippophae rhamnoides (Wild.) L., Inula Britannica L., Odontites ruber Gilib (total polyphenolic compound content, not less than 5.0%), Oxytropis strobilacea Bunge (rutin content, not less than 2.0%), Polygonum hydropiper Lour, Vaccinium vitis-idaea L. (tannins, not less than 5.0%), and Zygophyllum potanini Maxim (total flavonoid content based on kaempferol, 1.4%; WHO, 2013).
Allium mongolicum Regel is also well distributed in the country as a medicinal herb, which has some biological activities such as antioxidant, antitumor, antihypertensive, antimicrobial, anti-inflammatory, and improver gastrointestinal motility, hypolipidemic, appetite stimulating, kidney replenishing, and aphrodisiac (Dong et al., 2020; Wang et al., 2019). Wang et al. (2019) have studied the bioactivities of A. mongolicum in aqueous and methanol extracts. As reported by Wang et al. (2019), A. mongolicum has shown strong antioxidant activity.
Moreover, the strong antioxidant activities of Fragaria orientalis Losinsk, Vaccinium vitis-idaea, Hippophae rhamnoides, and Paeonia anomala L. were discovered that ranged from 797, 923, 1300 to 1544 mol TE/g dry leaf, respectively. The highest total phenolic compounds and flavonoid contents were observed in the dry leaf of the Vaccinium vitis-idaea (175 and 9 mg QE/g) (Enkhtuya et al., 2014). Birasuren et al. (2012) documented the antioxidant activity of Ribes diacanthum Pall. in its various extracts, which have traditionally been used in Mongolian medicine to treat kidney illnesses such as cystitis, bladder infections, retention, and edema. The ethyl acetate extract of R. diacanthum Pall. has potential antioxidant activities (Birasuren et al., 2012).
The lowest value with a radical scavenging capacity of 50% expresses the powerful antioxidant characteristics of the medicinal plants. Based on this value, Rhodiola rosea L., Saxifraga Spinulosa Adams, Bupleurum L., Artemisia dolosa Krasch. and Cicuta virosa L. were indicated to have strong antioxidant properties (5.84, 28.7, 67.93, 103.96, and 165.14 μg/mL, respectively; Badral et al., 2017).
3 ANTIBACTERIALS
The second group of natural food preservatives is antibacterial plants, which contain terpenes, peptides, polysaccharides, and phenolic compounds. These bioactive compounds have medicinal characteristics including antioxidant, antimicrobial, and anti-inflammatory effects that reduce or inhibit the risk of chronic and acute diseases. The primary function of antimicrobial activity is to control the growth of microorganisms that cause bacterial and fungal contamination in food products. The main goal of their use in food industry is to prevent food spoilage in processed and ready-to-eat food.
Microorganisms can have an impact on food in both positive and negative ways. Saccharomyces cerevisiae, lactic acid bacteria, and Acetobacterium species are the main microorganisms for food fermentation (Xu, 2017). Several phenolic compounds as well as ferulic acid, coumaric acid, and catechins were found to inhibit the growth of microbes, for example, Staphylococcus aureus, Salmonella enteritidis, and Listeria monocytogenes (El-Sayed & Youssef, 2019). Saprophytic microorganisms also influence the spoilage of food and the growth of pathogenic microorganisms that cause food-borne illnesses (Xu, 2017). Many natural ingredients have antimicrobial properties that range from mild to potent. An ideal model compound for the natural antimicrobial activity should have broad bactericidal and fungicidal activities, be active at low concentrations, heat stable, unaffected by pH, nontoxic, easily assayable, nonpharmaceutical, nonsusceptible to resistance from contaminants, label-friendly, and cost-effective (Carocho et al., 2015).
The primary function of secondary metabolites with antimicrobial activity is to protect against pests and stress while also acting as signaling molecules between the cell and the environment. The mixture of plant polyphenols and essential oils with antimicrobial properties is used for the preservation of raw and processed products, for example, meat, fish, dairy products, fruit, and vegetables. Furthermore, essential oils such as thymol and carvacrol have been used in the packaging of food (Carocho et al., 2015).
The research on the antibacterial activity of Mongolian herbs is summarized in Table 1. Antibacterial activity of bacteria such as S. aureus, E. faecalis, and M. luteus was determined in most plants.
TABLE 1.
The antibacterial activity of some Mongolian plants (inhibited growth in mm).
Plant names |
S. aureus
|
E. coli
|
P. aeruginosa
|
N.Gonorrhoeae
|
C.albicans
|
S. epidermidis
|
E. faecalis
|
M. luteus
|
B. subtilis
|
B. cereus
|
C. violaceum
|
References |
Abies sibirica L.
|
13.1 |
|
|
|
|
|
|
22 |
|
|
|
Gonchig et al. (2008) |
Agrimonia pilosa L.
|
20.2 |
|
|
|
|
|
|
21.3 |
|
|
|
Aquilegia sibirica Lam.
|
11.2 |
|
|
|
|
|
|
|
|
|
|
Artemisia pectinata Pall.
|
14.7 |
|
|
|
|
|
|
18 |
|
|
|
Astragalus junafovii Sancz. |
|
|
|
|
|
|
|
|
|
|
19–25 |
(Zolboo et al., 2015) |
Caryopteris mongolica Bunge. |
10.2–12.9 |
|
|
|
|
10.2–15.9 |
9.6–23.2 |
9.0–16.3 |
|
|
|
(Saruul et al., 2015) |
Comarum salesovianum Steph.
|
24.2 |
|
|
|
|
|
15.3 |
24.7 |
|
|
|
Gonchig et al. (2008) |
Dasiphora fruticosa (L.) Rydb.
|
11.5–13.0 |
|
|
|
|
|
10.2 |
12.6–13.0 |
|
|
|
Goniolimon speciosum (L.) Boiss.
|
18 |
|
|
|
|
|
|
10.9 |
|
|
23.5–27.5 |
Gonchig et al. (2008) |
Hedysarum alpinum L. |
|
|
|
|
|
|
|
|
|
|
24.5 |
Zolboo et al. (2015) |
Lagotis integrifolia (Willd.) Schischk.
|
11.9 |
|
|
|
|
|
|
11.4 |
|
|
|
Gonchig et al. (2008) |
Ledum palustre L. |
|
|
|
|
|
|
|
|
|
|
19–28 |
Zolboo et al. (2015) |
Lophanthus chinensis (Raf.) Benth. |
|
|
|
|
|
|
|
|
|
|
22 |
Lophanthus krylovii Lipsky. |
|
|
|
|
|
|
|
|
|
|
20.5 |
Malva mohileviensis Down.
|
|
|
|
|
|
|
|
11.6 |
|
|
|
Gonchig et al. (2008) |
Myricaria alopecuroides Schrenk.
|
11.7 |
|
|
|
|
|
12.2 |
13.7 |
|
|
|
Paeonia anomala L.
|
16.5 |
10 |
|
|
|
|
12 |
25.7 |
|
|
|
Pinus sylvestris. var mongolica Litv. |
4 |
|
|
|
|
|
|
|
5 |
5 |
|
Namshir et al. (2020) |
Potentilla viscosa G. Donn
|
14 |
|
|
|
|
|
14.3 |
15 |
|
|
|
Gonchig et al. (2008) |
Pyrola incarnata (D.C.) Freyn
|
17.5 |
|
|
|
|
|
13.6 |
18.4 |
|
|
|
Pyrethrum pulchrum L |
11 |
|
17 |
|
12 |
|
14 |
|
11 |
|
|
Erdenetsogt et al. (2019) |
Rhinanthus songaricus (Skerneck) B.Fedtsch.
|
|
|
|
|
|
|
|
9.8 |
|
|
|
Gonchig et al. (2008) |
Rosa acicularis Lindl.
|
13.2 |
|
|
|
|
|
12.4 |
15.8 |
|
|
|
Scutellaria baicalensis Georgi
|
15.9 |
|
|
|
|
|
|
|
|
|
|
Gonchig et al. (2008) |
Sedum aizoon L.
|
13.6 |
|
|
|
|
|
9.7 |
11.9 |
|
|
|
Gendaram et al. (2011); Gonchig et al. (2008) |
Sedum hybridum L.
|
10.5; 8.6–13.9 |
9.2–13.5 |
|
|
|
|
17.1; 9.2–13.2 |
14.6; 9.1–15.8 |
15.8 |
|
|
Gonchig et al. (2008) |
Serratula centauroides L.
|
|
|
|
|
|
|
|
10 |
|
|
|
Spiraea media F. Schmidt |
|
|
|
|
|
|
|
|
|
|
18 |
Zolboo et al. (2015) |
Spongiocarpella grubovii Ulzii |
|
|
|
|
|
|
|
|
|
|
36.5 |
From the table, Sedum hybridum L. (Crassulaceae), a local medicinal plant, demonstrated strong antioxidant (31.93 ± 0.65 μg/mL at IC50) and antibacterial activities in ethanol extract against gram-positive strains M. luteus and S. aureus. Herbs for food preservation can be utilized as whole plants, in parts, and in various forms such as extracts, solutions, and dried forms. As a result, it is appropriate to utilize the plant parts containing the most biologically active chemicals. Eighteen known compounds were extracted and identified using serial column chromatography of the ethyl acetate fraction of the plant extract using several packing materials and the researchers also investigated the antibacterial properties of isolated compounds found in medicinal plants against bacterial strains P. aeruginosa, E. coli, E. faecalis, M. luteus, and S. aureus by the disk diffusion method. The ethyl gallate inhibited the growth of M. luteus. (10.3–15.8 mm), E. faecalis (9.2–13.2 mm), E. coli, (9.2–13.5 mm), and S. aureus (9.8 mm) at 200–1000 μg/disk using the disk diffusion method (Gendaram et al., 2011). In 2015, Saruul et al. (2015) conducted the similar study. Aromatic abietane diterpenoids (demethylcryptojaponol, 6α-hydroxydemethyl cryptojaponol, and 6-hydroxysalvinolone) isolated from Caryopteris mongolica suppressed the growth of the S. aureus, S. epidermidis, E. faecalis, and M. luteus.
Moreover, natural antimicrobial – essential oil of the Pyrethrum pulchrum Ledeb. was investigated by Erdenetsogt et al. (2019). The essential oil, which was mostly composed of camphor (33.9%), linalool (21.1%), and α-pinene (9.0%), indicated a medium antibacterial activity against bacteria P. aeruginosa, M. vaccae, and E. faecalis. As previously reported, the essential oil extracted from the aerial part of the plant produced the same results (Erdenetsogt et al., 2019).
In 2008, Gonchig et al. conducted a large study on the antibacterial effects of the plants' extracts collected from 67 different plant species. The whole herb extracts of Hedysarum alpinum, Comarum salesovianum, and Sedum hybridum exhibited significant antibacterial activity against P. aeruginosa (10.5 mm), S. aureus (24.2 mm), and E. faecalis (17.1 mm), respectively. Furthermore, the root extract of Paeonia anomala exposed the highest antibacterial properties against E. coli (10 mm) and M. luteus (25.7 mm). Besides, the antibacterial activities of the plant extracts were evaluated in the different solvent fractions (dichloromethane, ethyl acetate, n-butanol, n-hexane, and water) and concentrations (0.5–4 mg/disc). The strong antibacterial activities were observed for ethyl acetate and n-butanol fractions obtained from the whole herb of Sedum hybridum and Sedum aizoon as well as the ethyl acetate fraction of the leaf extract of Dasiphora fruticosa and root extract of Paeonia anomala against S. aureus and M. luteus, respectively. Moreover, the ethyl acetate and n-butanol fractions of flower extracts of the Dasiphora fruticosa and Sedum aizoon were found to have a clear antibacterial effect against E. faecalis, while the whole herb extract of Sedum aizoon at 2 and 4 mg/disc demonstrated effective antibacterial activity against S. aureus (Gonchig et al., 2008). Antibacterial properties were also found in Chelidonium majus L. and Plantago major L. (WHO, 2013). Plants with the highest antibacterial activity, such as Sedum hybridum, Pyrethrum pulchrum L, and Caryopteris mongolica Bunge, have the potential to be used as natural food preservatives in the future.
4 ANTIFUNGALS
Fungi, among spoilage microorganisms, are a major issue at any stage of the food chain because of their ability to grow in a variety of, even harsh environments. As a result, food spoiling by mold can result in significant economic losses for the food industry, as well as a health risk for consumers due to mycotoxin-producing mold species (Pitt & Hocking, 2013).
Beyond their negative impact on food quality, some fungal genera such as Aspergillus, Penicillium, Alternaria, and Fusarium have the ability to produce mycotoxins that can have a toxic effect on humans and animals. Furthermore, mycotoxins are able to withstand many food processing steps, raising concerns about food safety (Sanzani et al., 2016). A. ochraceus and P. verrucosum, A. westerdijkiae are considered the most important ochratoxin A (OTA) producers in foods (Frisvad et al., 2019; Mantle, 2002). OTA is nephrotoxic, neurotoxic, hepatoxic, teratogenic, genotoxic, immunotoxic, embryotoxic, and carcinogenic and is classified as a possible human carcinogen (group 2B; Mantle et al., 2015; WHO, 2008). OTA is not destroyed during standard food production processes due to its high stability and can be found both in raw materials and in processed foods such as cereals and cereal products, coffee, grapes, wine, beer, cocoa, nuts, dried fruits, and spices (Jeršek et al., 2014; Malir et al., 2016).
A conventional way to prevent decomposition by microorganism growth is the use of preservatives. Despite the desire for safe food, there is an increasing consumer demand to avoid or diminish chemical food additives, resulting in a growing interest in new safe and biodegradable preservatives. The possible adverse health and ecological effects of convinced fungicides and preservatives have led to more natural methods. Until now, many plant extracts with antibacterial and antifungal activity have already been known, including essential oils (EOs) and their active components (Bakkali et al., 2008; Calo et al., 2015).
Giordani et al. (2020) investigated the antifungal activity of extracts obtained from some Mongolian medicinal plants by measuring their minimal inhibitory concentration (MIC) against fungi cause of cutaneous diseases such as Candida species, dermatophytes Microsporum gypseum, Trichophyton mentagrophytes, and Malassezia furfur. Only Stellaria dichotoma L., Scutellaria scordifolia L., Aquilegia sibirica Fisch. Et Schrenk, and Hyoscyamus niger L. showed antifungal activity. Their geometric mean (GM) MIC50 values against Candida spp were 84, 22, 181, and 169 mg/mL, respectively. The GM MIC50 values for dermatophytes of Scutellaria scordifolia L., Aquilegia sibirica Fisch. Et Schrenk were 32 and 256 mg/mL, correspondingly. For Malassezia furfur, Scutellaria scordifolia L. showed the best activity with MIC50 value of 64 mg/mL. In particular, S. scordifolia L. methanol extract exhibited the best activity against Candida spp., dermatophytes, and Malassezia furfur with GM MIC50 values of 22, 32, and 64 mg/mL, respectively (Olennikov & Chirikova, 2013; Shang et al., 2010).
Several studies have shown that Scutellaria barbata's essential oil inhibits the growth of Candida albicans, Candida tropicalis, and S. aureus (Yu et al., 2004) and Scutellaria baicalensis L. plant extracts prevent the growth of C. albicans, Cryptococcus neoformans, Pityrosporum ovale, and S. aureus (Gonchig et al., 2008). Scutellaria barbata has 51 flavonoids (Каримов et al., 2016. Scutellaria barbata is most noted for its potent anticancer properties and is frequently combined with other herbs for anticancer traditional Chinese medicine formulations to treat cancers of the lung, liver, breast, and gastrointestinal tract (Dharmananda, 2004; Gao et al., 2019). To date, multiple classes of phytochemicals, including flavonoids, essential oils, polysaccharides, and terpenoid alkaloids, have been identified from S. barbata herb (Gao et al., 2019). The most widespread and therefore studied in detail is S. baicalensis. So far, 131 flavonoids, 96 flavone derivatives, 21 flavanones, 6 flavonols, 4 isoflavones, 3 flavanonols and 1 chalcone have been found in various organs of S. baicalensis (Каримов et al., 2016)
Currently, 57 natural compounds isolated from 16 plant species of Aquilegia genus. These include labdane diterpene −2 (3.5%), cycloartane −13 (22.8%), flavonoids −22 (38.5%), alkaloids and nitrogen-containing compounds −10 (17.5%) and phenolic acids, and fatty acids. From these 19 new natural compounds belonging to cycloartane glycosides, labdane diterpene, flavoalkaloids, and nitrile nitrogen compound have been identified. The presence of flavoalkaloid can consider a specific characterization of Aquilegia species (Odontuya & Nomin, 2018).
The flavones luteolin and apigenin identified in S. scordifolia Fisch. ex Schrank extracts, as well as rutin found in Stellaria dichotoma L. and Hyoscyamus niger L. extracts, could be responsible for the observed antifungal activity (Giordani et al., 2020). Dulger et al. (2010) studied the antifungal properties of the methanolic extract obtained from H. niger against some clinically relevant fungi such as Candida and Cryptococcus species. Greater activity was observed for the extracts of H. niger against both Cryptococcus species, with values of 15 μg/mL. The extracts have a strong effect against Candida albicans and C. guilliermondii as the same MIC values (60 μg/mL), followed by yeast cultures such as C. tropicalis, C. krusei, and C. parapsilosis have susceptible to the extract at a MIC of 12.5 μg/mL. The highest MICs of the extract were 250 μg/mL against C. glabrata (Dulger et al., 2010).
Table 2 lists the Mongolian herbs that have been examined and determined for their biological activity useful in food preservation, as well as their chemical components.
TABLE 2.
Mongolian herbs with antioxidant, antimicrobial, and antifungal properties.
Herbs |
Compounds |
Antioxidant |
Antibacterial |
Antifungal |
Authors |
Calligonum mongolicum Turcz.
|
22 compounds |
+ |
+ |
|
Buyankhishig et al. (2021) |
Caryopteris mongolica Bunge
|
7 compounds |
|
+ |
|
Saruul et al. (2015) |
Leaves of Paeonia anomala L. |
Methyl gallate, pentagalloylglucose, tellimoside |
+ |
|
|
Enkhtuya et al. (2017) |
Mongolian medicinal plant extracts |
- |
|
+ |
+ |
Enkhtuya et al. (2017) |
Mongolian medicinal plants |
- |
|
+ |
|
Gonchig et al. (2008) |
Oxytropis pseudoglandulosa Gontsch. ex Grubov
|
26 components in volatile oil and 21 compounds in lipid extract |
+ |
+ |
|
Narangerel, Bonikowski, et al. (2021) |
Pinus sylvestris. var mongolica Litv. |
101 compounds in the essential oil. |
+ |
+ |
|
Namshir et al. (2020) |
Pyrethrum pulchrum Ledeb. |
55 chemical compounds in essential oil. |
|
+
|
+ |
Erdenetsogt et al. (2019) |
Ribes diacanthum Pall |
- |
+ |
|
|
Birasuren et al. (2012) |
Saxifraga spinulosa Adams
|
25 compounds in aerial parts. |
+ |
+ |
|
Birasuren et al. (2012) |
Sedum hybridum L. (Crassulaceae), |
18 compounds |
+ |
+ |
|
Gendaram et al. (2011) |
Thymus baicalensis Serg.
|
37 chemical compounds in volatile oil, 10 polyphenolic compounds, and 32 lipid components |
|
+ |
|
Narangerel, Sójka, et al. (2021) |
In addition, Table 3 contains the most prevalent local herbal spices that can be used as natural food preservatives. The antioxidant, antibacterial, and antifungal activities of commonly used herbal spices in Mongolia are listed in Table 3 on the basis of some applications including raw and processed food preservation, alternative medicines, and natural therapies. The relationship between antioxidant properties of spices and food spoilage has been well documented. Starting from the food preparation, spices can affect both food spoilage microorganisms (food preservation) and human pathogens (food safety) due to the antibacterial and antifungal activity of their natural constituents. These species can be used as sources of natural food preservatives with remarkable health benefits. Several studies have documented these effects and, in some cases, confirmed the mechanisms of action, though more research is needed in this area (Carocho et al., 2014).
TABLE 3.
Herbal spices with antioxidant, antibacterial, and antifungal activities as natural food preservatives.
Mongolian herbal spices |
Bioactive properties |
Main biological compounds |
Antioxidant |
Antibacterial |
Antifungal |
Allium sativum L.-Garlic |
+ |
+ |
+ |
Organosulfur such as allicin, phenolic, and polysaccharides compounds (Avato et al., 2000; Bag & Chattopadhyay, 2015; Batiha et al., 2020; Lanzotti, Barile, et al., 2012; Leontiev et al., 2018; Martins et al., 2016; Medina et al., 2019; Pârvu et al., 2019; Prados et al., 2005; Shams-Ghahfarokhi et al., 2006; Szychowski et al., 2018) |
Allium cepa L.-Onion |
+ |
+ |
+ |
Thiosulfinate compounds, phenolic compounds, especially flavonoids, and several organosulfur compounds, polysaccharides, quercetin, quercetin-4′-monoglucoside, quercetin-3,4′-diglucoside, anthocyanins, and essential oils (Bag & Chattopadhyay, 2015; Fredotovíc et al., 2017; Kocić-Tanackov et al., 2017; Lanzotti, Romano, et al., 2012; Ma et al., 2018; Marefati et al., 2021; Prakash et al., 2007; Sharma et al., 2014) |
Allium mongolicum Regel-Mongolian onion |
+ |
+ |
+ |
Polysaccharides, flavonoids polyphenols, and phenols (Chen et al., 2020; Ding et al., 2021; Li, Guo, et al., 2019; Li, Zhu, et al., 2019; Wang et al., 2019) |
Allium senescens L.- Aging chive |
+ |
+ |
+ |
Organosulfur compounds, saponins, and phenolics (Kyung, 2012; Pârvu et al., 2011; Qin et al., 2021 |
Allium victorialis L.- Alpine leek |
+ |
+ |
+ |
Allicin, kaempferol, ferulic acid, astragalin, methyl allyl disulfide, quercetin, diallyl disulfide, and furostanol glycosides (Khan et al., 2015; Kyung, 2012; Nishimura et al., 2006; Woo et al., 2012 |
Artemisia dracunculus L.-Tarragon |
+ |
+ |
+ |
L-ascorbic acids, chlorophylls, carotenoids, tannins and flavonoids, essential oils, coumarins (>1%), flavonoids, and phenol carbonic acid (Kordali et al., 2005; Nurzynska-Wierdak & Zawislak, 2014; Obolskiy et al., 2011; Parham et al., 2020; Sandulachi et al., 2021; Souri et al., 2004; Zare et al., 2021) |
Brassica juncea L Czern.-Mustard |
+ |
+ |
+ |
Phenolics, sinapic acid and sinapoyl esters, glucosinolate (Engels et al., 2012; Kurt et al., 2011; Miceli et al., 2014; Oguro et al., 2014; Park et al., 2017; Sturm & Wagner, 2017; Sun et al., 2018; Thiyam, Stöckmann, & Schwarz, 2006; Thiyam, Stöckmann, Zum Felde, et al., 2006; Tian & Deng, 2020 |
Carum carvi L.-Caraway |
+ |
+ |
+ |
Essential oils—carvone, limonene, germacrene D, and trans-dihydrocarvone, (Assami et al., 2012; Hajlaoui et al., 2021; Hromiš et al., 2015; Kocić-Tanackov et al., 2020; Obolskiy et al., 2011; Rasooli & Allameh, 2016; Samojlik et al., 2010; Seidler-Łozykowska et al., 2013; Tomović et al., 2021) |
Coriandrum sativum L.-Coriander |
+ |
+ |
+ |
Essential oils—(+)-Linalool (S)-(+)-linalool, α-Pinene β-Pinene, γ-Terpinene, α-Cedrene (Alves-Silva et al., 2013; Bogavac et al., 2015; Delaquis et al., 2002; Diana et al., 2016; Dua et al., 2014; Freires et al., 2014; Kačániová et al., 2020; Laribi et al., 2015; Mandal & Mandal, 2015; Marangoni & De Moura, 2011; Sriti et al., 2011) |
Foeniculum vulgare Mill.-Fennel |
+ |
+ |
+ |
Phenolic compounds, essential oils such as (E)-anethole, methyl-chavicol, fenchone, and limonene, phenylpropanoid derivatives, monoterpenoids, and sesquiterpene hydrocarbons (Anwar et al., 2009; Badgujar et al., 2014; Belabdelli et al., 2020; Ben Abdesslem et al., 2021; Choi & Hwang, 2004; Conforti et al., 2006; Diao et al., 2014; Farid et al., 2020; Goswami & Chatterjee, 2014; He & Huang, 2011; Kaur & Arora, 2009; Mohamad et al., 2011; Morales et al., 2012; Roby et al., 2013; Sayed-Ahmad et al., 2017; Shahat et al., 2011) |
Glycyrrhiza glabra L.-Licorice |
+ |
+ |
+ |
Triterpenes, saponins (responsible for the sweet taste), flavonoids, glycyrrhizin, 18β-glycyrrhetinic acid, glabridin A and B, and isoflavones, dihydrostilbene derivatives, and isoflavans
(Ajagannanavar et al., 2014; Alagawany et al., 2019; Ali, 2013; Cheema et al., 2014; Chouitah et al., 2011; Gupta et al., 2008; Hosseinzadeh & Nassiri-Asl, 2015; Irani et al., 2010; Jang et al., 2008; Karahan et al., 2016; Karkanis et al., 2018; Kim et al., 2013; Messier & Grenier, 2011; Pastorino et al., 2018; Simmler et al., 2013; Singh et al., 2015; Siracusa et al., 2011)
|
Malva sylvestris. L -Mallows |
+ |
+ |
|
Polyphenols, anthocyanins, coumarins, tannins, flavonoids, flavones, flavonols, anthocyanidines, leucoanthocyanidines, mucilage, and terpenoids such as sesquiterpenes, diterpenes, monoterpenes
(Barros et al., 2010; Cecotti et al., 2016; Cheng & Wang, 2006; Feizi et al., 2018; Mohammed et al., 2014; Mousavi et al., 2021; Razavi et al., 2011; Sharifi-Rad et al., 2020; Zhen-yu, 2005)
|
Matricaria recutita L.- Chamomile |
+ |
+ |
+ |
Flavonoids, terpenoids, and phenolic compounds primarily the flavonoids apigenin, quercetin, patuletin, luteolin and their glucosides, apigenin, and matricin (Al-Dabbagh et al., 2019; Höferl et al., 2020; Jang et al., 2008; Kazemi, 2015; Miraj & Alesaeidi, 2016; Sánchez et al., 2020; Sharifi-Rad et al., 2018; Singh et al., 2011; Stanojevic et al., 2016; Tsivelika et al., 2021) |
Mentha arvensis L.-Pennyroyal |
+ |
+ |
|
Menthol, somenthone/neoisomenthol, neomenthol, menthone, phenolic acids (e.g., rosmarinic and caffeic acids), flavones (e.g., luteolin derivatives), and flavanones (e.g., eriocitrin derivatives; Anwar et al., 2019; Benabdallah et al., 2016; Biswas et al., 2014; Bokhari et al., 2016; Dorman et al., 2003; Heydari et al., 2018; Hussain et al., 2010; Kalemba & Synowiec, 2020; Khan et al., 2019; Kurilov et al., 2009; Pandey et al., 2003; Salehi et al., 2018; Singh & Pandey, 2018; Varma & Dubey, 2001) |
Mentha L.-Mint |
+ |
+ |
+ |
Phenolic compounds, flavonoids (specific lipophilic flavonoids), terpenes/essential oils [(Iseppi et al., 2020; Jianu et al., 2021; Ludwiczuk et al., 2016; Mimica-Dukic et al., 2003; Mimica-Dukic & Bozin, 2008; Tafrihi et al., 2021; Zeljković et al., 2021)] |
Origanum vulgare L.-Oregano |
+ |
+ |
+ |
Essential oil (with carvacrol and/or thymol, linalool, γ-terpinene, and p-cymene), polyphenols (flavonoids and phenolic acids), triterpenoids, and sterols (Bhargava et al., 2015; Chishti et al., 2013; De Falco et al., 2013; El Babili et al., 2011; Fliou et al., 2020; Gutiérrez-del-Río et al., 2018; Hernández-Hernández et al., 2014; Koldaş et al., 2015; Lombrea et al., 2020; Lukas et al., 2015; Moghrovyan et al., 2019; Oniga et al., 2018; Parra et al., 2021; Pezzani et al., 2017; Pitaro et al., 2013; Potente et al., 2020; Prakash et al., 2021; Scalas et al., 2018; Soltani et al., 2021; Teixeira et al., 2013; Węglarz et al., 2020; Zhang et al., 2014) |
Portulaca oleracea L.-Portulaca |
+ |
+ |
|
Ascorbic acid, a-tocopherols, omega-3 fatty acids, apigenin, gallotannins, quercetin, and kaempferol, alkaloids, terpenoids, flavonoids, and organic acids (Alam et al., 2014; Banerjee & Mukherjee, 2002; Fernández-Poyatos et al., 2021; Gatea et al., 2017; Iranshahy et al., 2017; Rahimi et al., 2019; Sicari et al., 2018; Siriamornpun & Suttajit, 2010; Zhou et al., 2015) |
Thymus L.-Thyme |
+ |
+ |
+ |
Phenolic acids and flavonoids, caffeic, rosmarinic, p-coumaric acids, luteolin 7-O-glucoside, naringenin, and (−)-epicatechin, carvacrol, thymol, γ-terpinene, p-cymene, linalool, and phenols (Ateeq-Ur-Rehman et al., 2009; Bogavac et al., 2015; Dauqan & Abdullah, 2017; De Martino et al., 2009; Fliou et al., 2020; Galovičová et al., 2021; Iseppi et al., 2019; Mandal & DebMandal, 2016; Marques et al., 2015; Mathlouthi, 2003; Neidhart, 2016; Nzeako et al., 2006; Paaver et al., 2008; Purcell et al., 2016; Scalas et al., 2018; Sefidkon et al., 2004) |
Tribulus terrestris L.-Tribulus |
+ |
+ |
|
Tannin and phenolic acids, flavonoids, flavonol glycosides, steroidal saponins, and alkaloids (Al-Bayati & Al-Mola, 2008; Chhatre et al., 2014; Parham et al., 2020; Sivapalan, 2016; Wang et al., 2016; Zeeshan Amanullah et al., 2021) |
Urtica dioica L.-Nettle |
+ |
+ |
+ |
Carotenoids, flavonoids, quercetin, and polyphenolics (Dar et al., 2013; Grauso et al., 2020; Majedi et al., 2021; Modarresi-Chahardehi et al., 2012; Parham et al., 2020; Salehzadeh et al., 2014) |
5 CONCLUSION
Plant phytochemicals have long been known to protect plants from bacteria, fungi, viruses, and herbivores, but it was lately revealed that they are also important in protecting humans from disease. It is well known that a diverse array of herbs, vegetables, fruits, and grains, besides having nutrients, vitamins, and minerals, also possess a large variety of biologically active compounds. Significant part of medicinal plants is consumed by humans, and as a food, it additionally improves human health and well-being in general. The application of natural plant food preservatives with additional potential as health-promoting agents is especially interesting.
Furthermore, because a number of the studies use data from species collected in the wild under uncontrolled conditions, more research is needed to understand the effects of preserving food of bioactive compounds and to enhance the use of this valuable genetic material.
AUTHOR CONTRIBUTIONS
Munkhjargal Burenjargal: Data curation (equal); investigation (equal); resources (equal); software (equal); writing – original draft (equal). Saruul Idesh: Formal analysis (equal); methodology (equal); project administration (equal); supervision (equal); writing – original draft (equal); writing – review and editing (equal). Tuya Narangerel: Data curation (equal); investigation (equal); methodology (equal); validation (equal); writing – original draft (equal). Tuyagerel Batmunkh: Funding acquisition (equal); validation (equal); visualization (equal). Alideertu Dong: Methodology (equal).
ACKNOWLEDGMENTS
This work was supported by Basic research funding from the National University of Mongolia (PROF2022-2529).
CONFLICT OF INTEREST STATEMENT
The authors declare that they do not have any conflict of interest.
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available on request from the corresponding author.
REFERENCES
- Agrahari, P., & Singh, D. K. (2014). A review on the pharmacological aspects of Carum carvi. Journal of Biology and Earth Sciences, 4(1), M1–M13.
- Ajagannanavar, S. L., Battur, H., Shamarao, S., Sivakumar, V., Patil, P. U., & Shanavas, P. (2014). Effect of aqueous and alcoholic licorice (Glycyrrhiza glabra) root extract against Streptococcus mutans and lactobacillus acidophilus in comparison to chlorhexidine: An in vitro study. Journal of International Oral Health, 6(4), 29–34.
- Alagawany, M., Elnesr, S. S., Farag, M. R., El-Hack, M. E. A., Khafaga, A. F., Taha, A. E., Tiwari, R., Yatoo, M. I., Bhatt, P., Marappan, G., & Dhama, K. (2019). Use of licorice (Glycyrrhiza glabra) herb as a feed additive in poultry: Current knowledge and prospects. Animals, 9(8), 536. https://doi.org/10.3390/ani9080536
- Alam, M. A., Juraimi, A. S., Rafii, M. Y., Abdul Hamid, A., Aslani, F., Hasan, M. M., Mohd Zainudin, M. A., & Uddin, M. K. (2014). Evaluation of antioxidant compounds, antioxidant activities, and mineral composition of 13 collected purslane (Portulaca oleracea L.) accessions. BioMed Research International, 2014, 6–10. https://doi.org/10.1155/2014/296063
- Al-Bayati, F. A., & Al-Mola, H. F. (2008). Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq. Journal of Zhejiang University: Science B, 9(2), 154–159. https://doi.org/10.1631/jzus.B0720251
- Al-Dabbagh, B., Elhaty, I. A., Elhaw, M., Murali, C., Al Mansoori, A., Awad, B., & Amin, A. (2019). Antioxidant and anticancer activities of chamomile (Matricaria recutita L.). BMC Research Notes, 12(1), 1–8. https://doi.org/10.1186/s13104-018-3960-y
- Ali, E. M. (2013). Phytochemical composition, antifungal, antiaflatoxigenic, antioxidant, and anticancer activities of Glycyrrhiza glabra L. and Matricaria chamomilla L. essential oils. Journal of Medicinal Plants Research, 7(29), 2197–2207. https://doi.org/10.5897/JMPR2013.5134
- Alves-Silva, J. M., Dias dos Santos, S. M., Pintado, M. E., Pérez-álvarez, J. A., Fernández-López, J., & Viuda-Martos, M. (2013). Chemical composition and in vitro antimicrobial, antifungal and antioxidant properties of essential oils obtained from some herbs widely used in Portugal. Food Control, 32(2), 371–378. https://doi.org/10.1016/j.foodcont.2012.12.022
- Amit, S. K., Uddin, M. M., Rahman, R., Islam, S. M. R., & Khan, M. S. (2017). A review on mechanisms and commercial aspects of food preservation and processing. Agriculture & Food Security, 6(1), 51. https://doi.org/10.1186/s40066-017-0130-8
- Anwar, F., Abbas, A., Mehmood, T., Gilani, A. H., & Rehman, N. (2019). Mentha: A genus rich in vital nutra-pharmaceuticals—A review. Phytotherapy Research, 33(10), 2548–2570. https://doi.org/10.1002/ptr.6423
- Anwar, F., Ali, M., Hussain, A. I., & Shahid, M. (2009). Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare mill.) seeds from Pakistan. Flavour and Fragrance Journal, 24(4), 170–176. https://doi.org/10.1002/ffj.1929
- Assami, K., Pingret, D., Chemat, S., Meklati, B. Y., & Chemat, F. (2012). Ultrasound induced intensification and selective extraction of essential oil from Carum carvi L. seeds. Chemical Engineering and Processing: Process Intensification, 62, 99–105. https://doi.org/10.1016/j.cep.2012.09.003
- Ateeq-Ur-Rehman, Mannan, A., Inayatullah, S., Akhtar, M. Z., Qayyum, M., & Mirza, B. (2009). Biological evaluation of wild thyme (Thymus serpyllum). Pharmaceutical Biology, 47(7), 628–633. https://doi.org/10.1080/13880200902915622
- Avato, P., Tursi, F., Vitali, C., Miccolis, V., & Candido, V. (2000). Allylsulfide constituents of garlic volatile oil as antimicrobial agents. Phytomedicine, 7(3), 239–243. https://doi.org/10.1016/S0944-7113(00)80010-0
- Badgujar, S. B., Patel, V. V., & Bandivdekar, A. H. (2014). Foeniculum vulgare mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. BioMed Research International, 2014, 1–32. https://doi.org/10.1155/2014/842674
- Badral, D., Odonbayar, B., Murata, T., Munkhjargal, T., Tuvshintulga, B., Igarashi, I., Suganuma, K., Inoue, N., Brantner, A. H., Odontuya, G., Sasaki, K., & Batkhuu, J. (2017). Flavonoid and galloyl glycosides isolated from Saxifraga spinulosa and their antioxidative and inhibitory activities against species that cause piroplasmosis. Journal of Natural Products, 80(9), 2416–2423. https://doi.org/10.1021/acs.jnatprod.7b00142
- Bag, A., & Chattopadhyay, R. R. (2015). Evaluation of synergistic antibacterial and antioxidant efficacy of essential oils of spices and herbs in combination. PLoS One, 10(7), e0131321. https://doi.org/10.1371/journal.pone.0131321
- Bajpai, V. K., Kamle, M., Shukla, S., Mahato, D. K., Chandra, P., Hwang, S. K., Kumar, P., Huh, Y. S., & Han, Y. K. (2018). Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis, 26(4), 1201–1214. https://doi.org/10.1016/j.jfda.2018.06.011
- Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils–a review. Food and Chemical Toxicology, 46(2), 446–475. https://doi.org/10.1016/j.fct.2007.09.106
- Banerjee, G., & Mukherjee, A. (2002). Biological activity of a common weed–Portulaca oleracea L. II. Antifungal activity. Acta Botanica Hungarica, 44(3–4), 205–208. https://doi.org/10.1556/ABot.44.2002.3-4.1
- Barros, L., Carvalho, A. M., & Ferreira, I. C. F. R. (2010). Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. Food and Chemical Toxicology, 48(6), 1466–1472. https://doi.org/10.1016/j.fct.2010.03.012
- Batiha, G. E. S., Beshbishy, A. M., Wasef, L. G., Elewa, Y. H. A., Al-Sagan, A. A., El-Hack, M. E. A., Taha, A. E., Abd-Elhakim, Y. M., & Devkota, H. P. (2020). Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients, 12(3), 1–21. https://doi.org/10.3390/nu12030872
- Belabdelli, F., Piras, A., Bekhti, N., Falconieri, D., Belmokhtar, Z., & Merad, Y. (2020). Chemical composition and antifungal activity of Foeniculum vulgare mill. Chemistry Africa, 3(2), 323–328. https://doi.org/10.1007/s42250-020-00130-x
- Ben Abdesslem, S., Boulares, M., Elbaz, M., Ben Moussa, O., St-Gelais, A., Hassouna, M., & Aider, M. (2021). Chemical composition and biological activities of fennel (Foeniculum vulgare mill.) essential oils and ethanolic extracts of conventional and organic seeds. Journal of Food Processing and Preservation, 45(1), 15034. https://doi.org/10.1111/jfpp.15034
- Benabdallah, A., Rahmoune, C., Boumendjel, M., Aissi, O., & Messaoud, C. (2016). Total phenolic content and antioxidant activity of six wild Mentha species (Lamiaceae) from northeast of Algeria. Asian Pacific Journal of Tropical Biomedicine, 6(9), 760–766. https://doi.org/10.1016/j.apjtb.2016.06.016
- Bhargava, K., Conti, D. S., da Rocha, S. R. P., & Zhang, Y. (2015). Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiology, 47, 69–73. https://doi.org/10.1016/j.fm.2014.11.007
- Birasuren, B., Oh, H. L., Kim, C. R., Kim, N. Y., Jeon, H. L., & Kim, M. R. (2012). Antioxidant activities of Ribes diacanthum pall extracts in the northern region of Mongolia. Preventive Nutrition and Food Science, 17(4), 261–268. https://doi.org/10.3746/pnf.2012.17.4.261
- Biswas, N. N., Saha, S., & Ali, M. K. (2014). Antioxidant, antimicrobial, cytotoxic and analgesic activities of ethanolic extract of Mentha arvensis L. Asian Pacific Journal of Tropical Biomedicine, 4(10), 792–797. https://doi.org/10.12980/APJTB.4.2014C1298
- Bogavac, M., Karaman, M., Janjušević, L., Sudji, J., Radovanović, B., Novaković, Z., Simeunović, J., & Božin, B. (2015). Alternative treatment of vaginal infections–in vitro antimicrobial and toxic effects of Coriandrum sativum L. and Thymus vulgaris L. essential oils. Journal of Applied Microbiology, 119(3), 697–710. https://doi.org/10.1111/jam.12883
- Bokhari, N., Perveen, K., Al Khulaifi, M., Kumar, A., & Siddiqui, I. (2016). In vitro antibacterial activity and chemical composition of essential oil of Mentha arvensis Linn. Leaves. Journal of Essential Oil-Bearing Plants, 19(4), 907–915. https://doi.org/10.1080/0972060X.2016.1184993
- Brewer, M. S. (2011). Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety, 10(4), 221–247. https://doi.org/10.1111/j.1541-4337.2011.00156.x
- Buyankhishig, B., Murata, T., Odonbayar, B., Batkhuu, J., & Sasaki, K. (2021). New compounds from the aerial parts of Calligonum mongolicum. Phytochemistry Letters, 41(July 2020), 147–151. https://doi.org/10.1016/j.phytol.2020.12.002
- Calo, J. R., Crandall, P. G., O'Bryan, C. A., & Ricke, S. C. (2015). Essential oils as antimicrobials in food systems–A review. Food Control, 54, 111–119. https://doi.org/10.1016/j.foodcont.2014.12.040
- Campêlo, M. C. S., Medeiros, J. M. S., & Silva, J. B. A. (2019). Natural products in food preservation. International Food Research Journal, 26(1), 41–46.
- Carocho, M., Barreiro, M. F., Morales, P., & Ferreira, I. C. F. R. (2014). Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety, 13(4), 377–399. https://doi.org/10.1111/1541-4337.12065
- Carocho, M., Morales, P., & Ferreira, I. C. F. R. (2015). Natural food additives: Quo vadis? Trends in Food Science and Technology, 45(2), 284–295. https://doi.org/10.1016/j.tifs.2015.06.007
- Cecotti, R., Bergomi, P., Carpana, E., & Tava, A. (2016). Chemical characterization of the volatiles of leaves and flowers from cultivated Malva sylvestris var. mauritiana and their antimicrobial activity against the aetiological agents of the European and American foulbrood of honeybees (Apis mellifera). Natural Product Communications, 11(10), 1527–1530. https://doi.org/10.1177/1934578x1601101026
- Cheema, H. S., Prakash, O., Pal, A., Khan, F., Bawankule, D. U., & Darokar, M. P. (2014). Glabridin induces oxidative stress mediated apoptosis like cell death of malaria parasite Plasmodium falciparum. Parasitology International, 63(2), 349–358. https://doi.org/10.1016/j.parint.2013.12.005
- Chen, Y., Ding, Z., Wu, Y., Chen, Q., Liu, M., Yu, H., Wang, D., Zhang, Y., & Wang, T. (2020). Effects of Allium mongolicum regel and its flavonoids on constipation. Biomolecules, 10(1), 14. https://doi.org/10.3390/biom10010014
- Cheng, C., & Wang, Z. (2006). Bacteriostasic activity of anthocyanin of Malva sylvestris. Journal of Forestry Research, 17(1), 83–85. https://doi.org/10.1007/s11676-006-0020-6
- Chhatre, S., Nesari, T., Somani, G., Kanchan, D., & Sathaye, S. (2014). Phytopharmacological overview of Tribulus terrestris. Pharmacognosy Reviews, 8(15), 45–51. https://doi.org/10.4103/0973-7847.125530
- Chishti, S., Kaloo, Z. A., & Sultan, P. (2013). Medicinal importance of genus Origanum: A review. Journal of Pharmacognosy and Phytotherapy, 5(10), 170–177. https://doi.org/10.5897/JPP2013.0285
- Choi, E. M., & Hwang, J. K. (2004). Antiinflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoterapia, 75(6), 557–565. https://doi.org/10.1016/j.fitote.2004.05.005
- Chouitah, O., Meddah, B., Aoues, A., & Sonnet, P. (2011). Chemical composition and antimicrobial activities of the essential oil from Glycyrrhiza glabra leaves. Journal of Essential Oil-Bearing Plants, 14(3), 284–288. https://doi.org/10.1080/0972060X.2011.10643935
- Conforti, F., Statti, G., Uzunov, D., & Menichini, F. (2006). Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. piperitum (Ucria) coutinho seeds. Biological and Pharmaceutical Bulletin, 29(10), 2056–2064. https://doi.org/10.1248/bpb.29.2056
- Dar, S. A., Ganai, F. A., Yousuf, A. R., Balkhi, M. U. H., Bhat, T. M., & Sharma, P. (2013). Pharmacological and toxicological evaluation of Urtica dioica. Pharmaceutical Biology, 51(2), 170–180. https://doi.org/10.3109/13880209.2012.715172
- Dauqan, E. M. A., & Abdullah, A. (2017). Medicinal and functional values of thyme (Thymus vulgaris L.) herb. Journal of Applied Biology & Biotechnology, 5(2), 17–22. https://doi.org/10.7324/jabb.2017.50203
- De Falco, E., Mancini, E., Roscigno, G., Mignola, E., Taglialatela-Scafati, O., & Senatore, F. (2013). Chemical composition and biological activity of essential oils of Origanum vulgare L. subsp. vulgare L. under different growth conditions. Molecules, 18(12), 14948–14960. https://doi.org/10.3390/molecules181214948
- De Martino, L., De Feo, V., Formisano, C., Mignola, E., & Senatore, F. (2009). Chemical composition and antimicrobial activity of the essential oils from three chemotypes of Origanum vulgare L ssp. hirtum (Link) Ietswaart growing wild in Campania (Southern Italy). Molecules, 14(8), 2735–2746. https://doi.org/10.3390/molecules14082735
- Delaquis, P. J., Stanich, K., Girard, B., & Mazza, G. (2002). Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. International Journal of Food Microbiology, 74(1–2), 101–109. https://doi.org/10.1016/S0168-1605(01)00734-6
- Dharmananda, S. (2004). Oldenlandia and Scutellaria antitoxin and anticancer herbs. http://www.itmonline.org/arts/oldenlandia.htm
- Diana, M., Sales, C., Costa, H. B., & Meira, D. D. (2016). Ameliorative properties of Iranian Trigonella foenum-graecum L. seeds and Punica granatum L. peel extracts in streptozotocin-induced experimental diabetic Guinea pigs. Asian Pacific Journal of Tropical Biomedicine, 6(1), 26–31.
- Diao, W. R., Hu, Q. P., Zhang, H., & Xu, J. G. (2014). Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare mill.). Food Control, 35(1), 109–116. https://doi.org/10.1016/j.foodcont.2013.06.056
- Ding, H., Liu, W., Erdene, K., Du, H., & Ao, C. (2021). Effects of dietary supplementation with Allium mongolicum regel extracts on growth performance, serum metabolites, immune responses, antioxidant status, and meat quality of lambs. Animal Nutrition, 7(2), 530–538. https://doi.org/10.1016/j.aninu.2021.04.001
- Dong, Y., Ruan, J., Ding, Z., Zhao, W., Hao, M., Zhang, Y., Jiang, H., Zhang, Y., & Wang, T. (2020). Phytochemistry and comprehensive chemical profiling study of flavonoids and phenolic acids in the aerial parts of Allium mongolicum regel and their intestinal motility evaluation. Molecules, 25(3), 577. https://doi.org/10.3390/molecules25030577
- Dorman, H. J. D., Koşar, M., Kahlos, K., Holm, Y., & Hiltunen, R. (2003). Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. Journal of Agricultural and Food Chemistry, 51(16), 4563–4569. https://doi.org/10.1021/jf034108k
- Dua, A., Agrawal, S., Kaur, A., & Mahajan, R. (2014). Antioxidant profile of Coriandrum sativum methanolic extract. International Research Journal of Pharmacy, 5(3), 220–224. https://doi.org/10.7897/2230-8407.050347
- Dulger, B., Goncu, B. S., & Gucin, F. (2010). Antibacterial activity of the seeds of Hyoscyamus Niger L. (henbane). Asian Journal of Chemistry, 22(9), 6879–6883.
- El Babili, F., Bouajila, J., Souchard, J. P., Bertrand, C., Bellvert, F., Fouraste, I., Moulis, C., & Valentin, A. (2011). Oregano: Chemical analysis and evaluation of its antimalarial, antioxidant, and cytotoxic activities. Journal of Food Science, 76(3), C512–C518. https://doi.org/10.1111/j.1750-3841.2011.02109.x
- El-Sayed, S. M., & Youssef, A. M. (2019). Potential application of herbs and spices and their effects in functional dairy products. Heliyon, 5(6), e01989. https://doi.org/10.1016/j.heliyon.2019.e01989
- Engels, C., Schieber, A., & Gänzle, M. G. (2012). Sinapic acid derivatives in defatted oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MSn and identification of compounds with antibacterial activity. European Food Research and Technology, 234(3), 535–542. https://doi.org/10.1007/s00217-012-1669-z
- Enkhtuya, E., Kashiwagi, T., Shimamura, T., Ukeda, H., & Tseye-Oidov, O. (2014). Screening study on antioxidant activity of plants grown wildly in Mongolia. Food Science and Technology Research, 20(4), 891–897. https://doi.org/10.3136/fstr.20.891
- Enkhtuya, E., Shimamura, T., Kashiwagi, T., & Ukeda, H. (2017). Antioxidative constituents in the leaves of Paeonia anomala grown in Mongolia. Food Science and Technology Research, 23(1), 63–70. https://doi.org/10.3136/fstr.23.63
- Erdenetsogt, U., Gotov, C., Voigt, K., Bartram, S., Boland, W., & Dagvadorj, E. (2019). Chemical composition and antimicrobial activity of essential oil from pyrethrum pulchrum Ledeb. Journal of Pharmacognosy & Natural Products, 4(2), 38–43. https://doi.org/10.4172/2472-0992.1000154
- FAO. (2011). Global food losses and food waste – Extent, causes and prevention. https://www.fao.org/3/i2697e/i2697e.pdf
- FAO. (2017). The state of food security and nutrition in Europe and central Asia. http://www.fao.org/3/a-i8194e.pdf
- Farid, A., Kamel, D., Abdelwahab Montaser, S., Mohamed Ahmed, M., El Amir, M., & El Amir, A. (2020). Assessment of antioxidant, immune enhancement, and antimutagenic efficacy of fennel seed extracts in irradiated human blood cultures. Journal of Radiation Research and Applied Sciences, 13(1), 260–266. https://doi.org/10.1080/16878507.2020.1728963
- Feizi, S., Taghipour, E., Ghadam, P., & Mohammadi, P. (2018). Antifungal, antibacterial, antibiofilm and colorimetric sensing of toxic metals activities of eco friendly, economical synthesized Ag/AgCl nanoparticles using Malva Sylvestris leaf extracts. Microbial Pathogenesis, 125, 33–42. https://doi.org/10.1016/j.micpath.2018.08.054
- Fernández-Poyatos, M. D. P., Llorent-Martínez, E. J., & Ruiz-Medina, A. (2021). Phytochemical composition and antioxidant activity of Portulaca oleracea: Influence of the steaming cooking process. Food, 10(1), 94. https://doi.org/10.3390/foods10010094
- Fliou, J., Riffi, O., Amechrouq, A., Elhourri, M., & Ghouati, Y. (2020). Comparative study of the chemical composition of the essential oil of Origanum compactum from the seven regions of Morocco and their antimicrobial activity. Journal of Microbiology, Biotechnology and Food Sciences, 10(1), 42–48. https://doi.org/10.15414/jmbfs.2020.10.1.42-48
- Fredotovíc, Ž., Šprung, M., Soldo, B., Ljubenkov, I., Budić-Leto, I., Bilušić, T., Cikeš-Čulić, V., & Puizina, J. (2017). Chemical composition and biological activity of Allium cepa L. and allium × cornutum (Clementi ex Visiani 1842) methanolic extracts. Molecules, 22(3), 448. https://doi.org/10.3390/molecules22030448
- Freires, I. D. A., Murata, R. M., Furletti, V. F., Sartoratto, A., De Alencar, S. M., Figueira, G. M., Rodrigues, J. A. D. O., Duarte, M. C. T., & Rosalen, P. L. (2014). Coriandrum sativum L. (coriander) essential oil: Antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression. PLoS One, 9(6), e99086. https://doi.org/10.1371/journal.pone.0099086
- Frisvad, J. C., Hubka, V., Ezekiel, C. N., Hong, S. B., Nováková, A., Chen, A. J., Arzanlou, M., Larsen, T. O., Sklenář, F., Mahakarnchanakul, W., Samson, R. A., & Houbraken, J. (2019). Taxonomy of aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Studies in Mycology, 93, 1–63. https://doi.org/10.1016/j.simyco.2018.06.001
- Galovičová, L., Borotová, P., Valková, V., Vukovic, N. L., Vukic, M., Štefániková, J., Ďúranová, H., Kowalczewski, P. Ł., Čmiková, N., & Kačániová, M. (2021). Thymus vulgaris essential oil and its biological activity. Plants, 10(9), 1–17. https://doi.org/10.3390/plants10091959
- Gao, J., Yin, W., & Corcoran, O. (2019). From Scutellaria barbata to BZL101 in cancer patients: Phytochemistry, pharmacology, and clinical evidence. Natural Product Communications, 14(10), 1–12. https://doi.org/10.1177/1934578X19880645
- Gatea, F., Dumitra Teodor, E., Maria Seciu, A., Nagodă, E., & Lucian Radu, G. (2017). Chemical constituents and bioactive potential of Portulaca pilosa L vs Portulaca Oleracea L. Medicinal Chemistry Research, 26(7), 1516–1527. https://doi.org/10.1007/s00044-017-1862-5
- Gendaram, O., Choi, Y. H., Kim, Y. S., & Ryu, S. Y. (2011). Anti-oxidative and antibacterial constituents from Sedum hybridum. Natural Product Sciences, 17(4), 279–284.
- Gharras, H. E. (2009). Polyphenols : Food sources, properties and applications – A review. International Journal of Food Science & Technology, 44, 2512–2518. https://doi.org/10.1111/j.1365-2621.2009.02077.x
- Giordani, C., Simonetti, G., Natsagdorj, D., Choijamts, G., Ghirga, F., Calcaterra, A., Quaglio, D., De Angelis, G., Toniolo, C., & Pasqua, G. (2020). Antifungal activity of Mongolian medicinal plant extracts. Natural Product Research, 34(4), 449–455. https://doi.org/10.1080/14786419.2019.1610960
- Gonchig, E., Erdenebat, S., Togtoo, O., Bataa, S., Gendaram, O., Young, S. K., & Shi, Y. R. (2008). Antimicrobial activity of Mongolian medicinal plants. Natural Product Sciences, 14(1), 32–36 https://www.koreascience.or.kr/article/JAKO200817663908980.pdf
- Goswami, N., & Chatterjee, S. (2014). Assessment of free radical scavenging potential and oxidative DNA damage preventive activity of Trachyspermum ammi L. (carom) and Foeniculum vulgare mill. (fennel) seed extracts. BioMed Research International, 2014, 1–8. https://doi.org/10.1155/2014/582767
- Grauso, L., de Falco, B., Lanzotti, V., & Motti, R. (2020). Stinging nettle, Urtica dioica L.: Botanical, phytochemical and pharmacological overview. Phytochemistry Reviews, 19(6), 1341–1377. https://doi.org/10.1007/s11101-020-09680-x
- Gupta, V. K., Fatima, A., Faridi, U., Negi, A. S., Shanker, K., Kumar, J. K., Rahuja, N., Luqman, S., Sisodia, B. S., Saikia, D., Darokar, M. P., & Khanuja, S. P. S. (2008). Antimicrobial potential of Glycyrrhiza glabra roots. Journal of Ethnopharmacology, 116(2), 377–380. https://doi.org/10.1016/j.jep.2007.11.037
- Gutiérrez-del-Río, I., Fernández, J., & Lombó, F. (2018). Plant nutraceuticals as antimicrobial agents in food preservation: Terpenoids, polyphenols and thiols. International Journal of Antimicrobial Agents, 52(3), 309–315. https://doi.org/10.1016/j.ijantimicag.2018.04.024
- Hajlaoui, H., Arraouadi, S., Noumi, E., Aouadi, K., Adnan, M., Khan, M. A., Kadri, A., & Snoussi, M. (2021). Antimicrobial, antioxidant, anti-acetylcholinesterase, antidiabetic, and pharmacokinetic properties of Carum carvi L. and Coriandrum sativum L. essential oils alone and in combination. Molecules, 26(12), 3625. https://doi.org/10.3390/molecules26123625
- He, W., & Huang, B. (2011). A review of chemistry and bioactivities of a medicinal spice: Foeniculum vulgare. Journal of Medicinal Plants Research, 5(16), 3595–3600 http://www.academicjournals.org/JMPR
- Hernández-Hernández, E., Regalado-González, C., Vázquez-Landaverde, P., Guerrero-Legarreta, I., & García-Almendárez, B. E. (2014). Microencapsulation, chemical characterization, and antimicrobial activity of Mexican (Lippia graveolens H.B.K.) and European (Origanum vulgare L.) oregano essential oils. Scientific World Journal, 2014, 1–12. https://doi.org/10.1155/2014/641814
- Heydari, M., Zanfardino, A., Taleei, A., Bushehri, A. A. S., Hadian, J., Maresca, V., Sorbo, S., Di Napoli, M., Varcamonti, M., Basile, A., & Rigano, D. (2018). Effect of heat stress on yield, monoterpene content and antibacterial activity of essential oils of Mentha x piperita var. Mitcham and Mentha arvensis var. piperascens. Molecules, 23(8), 1903. https://doi.org/10.3390/molecules23081903
- Höferl, M., Wanner, J., Tabanca, N., Ali, A., Gochev, V., Schmidt, E., Kaul, V. K., Singh, V., & Jirovetz, L. (2020). Biological activity of Matricaria chamomilla essential oils of various chemotypes. Planta Medica International Open, 7(3), e114–e121. https://doi.org/10.1055/a-1186-2400
- Hosseinzadeh, H., & Nassiri-Asl, M. (2015). Pharmacological effects of Glycyrrhiza spp. and its bioactive constituents: Update and review. Phytotherapy Research, 29(12), 1868–1886. https://doi.org/10.1002/ptr.5487
- Hromiš, N. M., Lazić, V. L., Markov, S. L., Vaštag, Ž. G., Popović, S. Z., Šuput, D. Z., Džinić, N. R., Velićanski, A. S., & Popović, L. M. (2015). Optimization of chitosan biofilm properties by addition of caraway essential oil and beeswax. Journal of Food Engineering, 158, 86–93. https://doi.org/10.1016/j.jfoodeng.2015.01.001
- Hussain, A. I., Anwar, F., Nigam, P. S., Ashraf, M., & Gilani, A. H. (2010). Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. Journal of the Science of Food and Agriculture, 90(11), 1827–1836. https://doi.org/10.1002/jsfa.4021
- Irani, M., Sarmadi, M., Bernard, F., Ebrahimi Pour, G. H., & Bazarnov, H. S. (2010). Leaves antimicrobial activity of Glycyrrhiza glabra L. Iranian Journal of Pharmaceutical Research, 9(4), 425–428. https://doi.org/10.22037/ijpr.2010.909
- Iranshahy, M., Javadi, B., Iranshahi, M., Jahanbakhsh, S. P., Mahyari, S., Hassani, F. V., & Karimi, G. (2017). A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. Journal of Ethnopharmacology, 205, 158–172. https://doi.org/10.1016/j.jep.2017.05.004
- Iseppi, R., Sabia, C., de Niederhäusern, S., Pellati, F., Benvenuti, S., Tardugno, R., Bondi, M., & Messi, P. (2019). Antibacterial activity of Rosmarinus officinalis L. and Thymus vulgaris L. essential oils and their combination against food-borne pathogens and spoilage bacteria in ready-to-eat vegetables. Natural Product Research, 33(24), 3568–3572. https://doi.org/10.1080/14786419.2018.1482894
- Iseppi, R., Tardugno, R., Brighenti, V., Benvenuti, S., Sabia, C., Pellati, F., & Messi, P. (2020). Phytochemical composition and in vitro antimicrobial activity of essential oils from the Lamiaceae family against Streptococcus agalactiae and Candida albicans biofilms. Antibiotics, 9(9), 1–16. https://doi.org/10.3390/antibiotics9090592
- Jang, M. H., Piao, X. L., Kim, J. M., Kwon, S. W., & Park, J. H. (2008). Inhibition of cholinesterase and amyloid-β aggregation by resveratrol oligomers from Vitis amurensis. Phytotherapy Research, 22(4), 544–549. https://doi.org/10.1002/ptr
- Jeršek, B., Ulrih, N. P., Skrt, M., Gavarić, N., Božin, B., & Možina, S. S. (2014). Effects of selected essential oils on the growth and production of ochratoxin A by Penicillium verrucosum. Archives of Industrial Hygiene and Toxicology, 65(2), 199–208. https://doi.org/10.2478/10004-1254-65-2014-2486
- Jianu, C., Stoin, D., Cocan, I., David, I., Pop, G., Lukinich-gruia, A. T. A. T. A. T., Mioc, M., Mioc, A., Șoica, C., Muntean, D., Rusu, L.-C., Goleț, I., Horhat, D. I., Potential, A., Graham, R., Jianu, C., Stoin, D., Cocan, I., David, I., … Horhat, D. I. (2021). In silico and in vitro evaluation of the antimicrobial and antioxidant potential of Mentha × smithiana R GRAHAM essential oil from Western Romania. Foods, 10(4), 815. https://doi.org/10.3390/foods10040815
- Kačániová, M., Galovičová, L., Ivanišová, E., Vukovic, N. L., Štefániková, J., Valková, V., Borotová, P., Žiarovská, J., Terentjeva, M., Felšöciová, S., & Tvrdá, E. (2020). Antioxidant, antimicrobial and antibiofilm activity of coriander (Coriandrum sativum L.) essential oil for its application in foods. Food, 9(3), 282–301. https://doi.org/10.3390/foods9030282
- Kalemba, D., & Synowiec, A. (2020). Agrobiological interactions of essential oils of two menthol mints: Mentha piperita and Mentha arvensis. Molecules, 25(1), 1–33. https://doi.org/10.3390/molecules25010059
- Karahan, F., Avsar, C., Ozyigit, I. I., & Berber, I. (2016). Antimicrobial and antioxidant activities of medicinal plant Glycyrrhiza glabra var. glandulifera from different habitats. Biotechnology and Biotechnological Equipment, 30(4), 797–804. https://doi.org/10.1080/13102818.2016.1179590
- Karkanis, A., Martins, N., Petropoulos, S. A., & Ferreira, I. C. F. R. (2018). Phytochemical composition, health effects, and crop management of liquorice (Glycyrrhiza glabra L.): Α medicinal plant. Food Reviews International, 34(2), 182–203. https://doi.org/10.1080/87559129.2016.1261300
- Kaur, G. J., & Arora, D. S. (2009). Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complementary and Alternative Medicine, 9, 1–10. https://doi.org/10.1186/1472-6882-9-30
- Каримов, А. М., & Ботиров, Э. Х. (2016). Структурное разнообразие и степень изученности флавоноидов рода Scutellaria L. Химия растительного сырья, (1), 5-28. https://doi.org/10.14258/jcprm.201601962
- Kazemi, M. (2015). Chemical composition and antimicrobial activity of essential oil of Matricaria recutita. International Journal of Food Properties, 18(8), 1784–1792. https://doi.org/10.1080/10942912.2014.939660
- Khan, A. A., Amjad, M. S., & Saboon. (2019). GC-MS analysis and biological activities of Thymus vulgaris and Mentha arvensis essential oil. Turkish Journal of Biochemistry, 44(3), 388–396. https://doi.org/10.1515/tjb-2018-0258
- Khan, S., Fatima, I., Kazmi, M. H., & Malik, A. (2015). A new steroidal alkaloid from Allium victorialis. Chemistry of Natural Compounds, 51(6), 1134–1137. https://doi.org/10.1007/s10600-015-1509-z
- Kim, J., Joo, I., Kim, H., & Han, Y. (2013). 18β-Glycyrrhetinic acid induces immunological adjuvant activity of Th1 against Candida albicans surface mannan extract. Phytomedicine, 20(11), 951–955. https://doi.org/10.1016/j.phymed.2013.04.008
- Kocić-Tanackov, S., Dimić, G., Đerić, N., Mojović, L., Tomović, V., Šojić, B., Đukić-Vuković, A., & Pejin, J. (2020). Growth control of molds isolated from smoked fermented sausages using basil and caraway essential oils, in vitro and in vivo. LWT–Food Science and Technology, 123, 109095. https://doi.org/10.1016/j.lwt.2020.109095
- Kocić-Tanackov, S., Dimić, G., Mojović, L., Gvozdanović-Varga, J., Djukić-Vuković, A., Tomović, V., Šojić, B., & Pejin, J. (2017). Antifungal activity of the onion (Allium cepa L.) essential oil against aspergillus, Fusarium and Penicillium species isolated from food. Journal of Food Processing and Preservation, 41(4), e13050. https://doi.org/10.1111/jfpp.13050
- Koldaş, S., Demirtas, I., Ozen, T., Demirci, M. A., & Behçet, L. (2015). Phytochemical screening, anticancer and antioxidant activities of Origanum vulgare L. ssp. viride (Boiss.) Hayek, a plant of traditional usage. Journal of the Science of Food and Agriculture, 95(4), 786–798. https://doi.org/10.1002/jsfa.6903
- Kordali, S., Cakir, A., Mavi, A., Kilic, H., & Yildirim, A. (2005). Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species. Journal of Agricultural and Food Chemistry, 53(5), 1408–1416. https://doi.org/10.1021/jf048429n
- Kurilov, D. V., Kirichenko, E. B., Bidyukova, G. F., Olekhnovich, L. S., & Ku, L. D. (2009). Composition of the essential oil of introduced mint forms of Mentha piperita and Mentha arvensis species. Doklady Biological Sciences, 429(1), 538–540. https://doi.org/10.1134/S0012496609060167
- Kurt, Ş., Güneş, U., & Soylu, E. M. (2011). In vitro and in vivo antifungal activity of synthetic pure isothiocyanates against Sclerotinia sclerotiorum. Pest Management Science, 67(7), 869–875. https://doi.org/10.1002/ps.2126
- Kyung, K. H. (2012). Antimicrobial properties of allium species. Current Opinion in Biotechnology, 23(2), 142–147. https://doi.org/10.1016/j.copbio.2011.08.004
- Lanzotti, V., Barile, E., Antignani, V., Bonanomi, G., & Scala, F. (2012). Antifungal saponins from bulbs of garlic, Allium sativum L. var. Voghiera. Phytochemistry, 78, 126–134. https://doi.org/10.1016/j.phytochem.2012.03.009
- Lanzotti, V., Romano, A., Lanzuise, S., Bonanomi, G., & Scala, F. (2012). Antifungal saponins from bulbs of white onion, Allium cepa L. Phytochemistry, 74, 133–139. https://doi.org/10.1016/j.phytochem.2011.11.008
- Laribi, B., Kouki, K., M'Hamdi, M., & Bettaieb, T. (2015). Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia, 103, 9–26. https://doi.org/10.1016/j.fitote.2015.03.012
- Leontiev, R., Hohaus, N., Jacob, C., Gruhlke, M. C. H., & Slusarenko, A. J. (2018). A comparison of the antibacterial and antifungal activities of thiosulfinate analogues of allicin. Scientific Reports, 8(1), 1–19. https://doi.org/10.1038/s41598-018-25154-9
- Li, M., Zhu, X., Tian, J., Liu, M., & Wang, G. (2019). Dietary flavonoids from Allium mongolicum regel promotes growth, improves immune, antioxidant status, immune-related signaling molecules and disease resistance in juvenile northern snakehead fish (Channa argus). Aquaculture, 501, 473–481. https://doi.org/10.1016/j.aquaculture.2018.12.011
- Li, M. Y., Guo, W. Q., Guo, G. L., Zhu, X. M., Niu, X. T., Shan, X. F., Tian, J. X., Wang, G. Q., & Zhang, D. M. (2019). Effect of sub-chronic exposure to selenium and Allium mongolicum regel flavonoids on Channa argus: Bioaccumulation, oxidative stress, immune responses and immune-related signaling molecules. Fish and Shellfish Immunology, 91, 122–129. https://doi.org/10.1016/j.fsi.2019.05.002
- Lombrea, A., Antal, D., Ardelean, F., Avram, S., Pavel, I. Z., Vlaia, L., Mut, A. M., Diaconeasa, Z., Dehelean, C. A., Soica, C., & Danciu, C. (2020). A recent insight regarding the phytochemistry and bioactivity of Origanum vulgare L. essential oil. International Journal of Molecular Sciences, 21(24), 1–28. https://doi.org/10.3390/ijms21249653
- Ludwiczuk, A., Kiełtyka-Dadasiewicz, A., Sawicki, R., Golus, J., & Ginalska, G. (2016). Essential oils of some Mentha species and cultivars, their chemistry and bacteriostatic activity. Natural Product Communications, 11(7), 1015–1018. https://doi.org/10.1177/1934578x1601100736
- Lukas, B., Schmiderer, C., & Novak, J. (2015). Essential oil diversity of European Origanum vulgare L. (Lamiaceae). Phytochemistry, 119, 32–40. https://doi.org/10.1016/j.phytochem.2015.09.008
- Ma, Y. L., Zhu, D. Y., Thakur, K., Wang, C. H., Wang, H., Ren, Y. F., Zhang, J. G., & Wei, Z. J. (2018). Antioxidant and antibacterial evaluation of polysaccharides sequentially extracted from onion (Allium cepa L.). International Journal of Biological Macromolecules, 111, 92–101. https://doi.org/10.1016/j.ijbiomac.2017.12.154
- Magsar, U., Nyamsuren, K., Khadbaatar, S., Tovuudorj, M. E., Baasansuren, E., Indree, T., Lkhagvadorj, K., & Kwon, O. (2017). Survey of medicinal plants in the Khuvsgul and Khangai mountain regions of Mongolia. Journal of Ecology and Environment, 41(1), 1–5. https://doi.org/10.1186/s41610-017-0034-3
- Magsar, U., Vanjil, G., Tovuudorj, M., & Baasansuren, E. (2018). Medicinal plant diversity in the southern and eastern Gobi Desert region, Mongolia. Journal of Ecology and Environment, 42(1), 1–13. https://doi.org/10.1186/s41610-018-0064-5
- Majedi, S., Abdulsattar, T., Jalal, H., & Hussain, F. H. S. (2021). A review of biochemical structures of Urtica dioica metabolites and their pharmaceutical effects. Chemical Review and Letters, 4, 206–212.
- Malir, F., Ostry, V., Pfohl-Leszkowicz, A., Malir, J., & Toman, J. (2016). Ochratoxin A: 50 years of research. Toxins, 8(7), 12–15. https://doi.org/10.3390/toxins8070191
- Mandal, S., & DebMandal, M. (2016). Essential oils in food preservation, flavor and safety (pp. 825–834). Elsevier Inc. https://doi.org/10.1016/B978-0-12-416641-7.00094-8
- Mandal, S., & Mandal, M. (2015). Coriander (Coriandrum sativum L.) essential oil: Chemistry and biological activity. Asian Pacific Journal of Tropical Biomedicine, 5(6), 421–428. https://doi.org/10.1016/j.apjtb.2015.04.001
- Mantle, P., Kilic, M. A., Mor, F., & Ozmen, O. (2015). Contribution of organ vasculature in rat renal analysis for ochratoxin A: Relevance to toxicology of nephrotoxins. Toxins, 7(4), 1005–1017. https://doi.org/10.3390/toxins7041005
- Mantle, P. G. (2002). Risk assessment and the importance of ochratoxins. International Biodeterioration and Biodegradation, 50(3–4), 143–146. https://doi.org/10.1016/S0964-8305(02)00079-3
- Marangoni, C., & De Moura, N. F. (2011). Antioxidant activity of essential oil from Coriandrum Sativum L. in Italian salami. Ciência e Tecnologia de Alimentos, 31(1), 124–128. https://doi.org/10.1590/s0101-20612011000100017
- Marefati, N., Ghorani, V., Shakeri, F., Boskabady, M., Kianian, F., Rezaee, R., & Boskabady, M. H. (2021). A review of anti-inflammatory, antioxidant, and immunomodulatory effects of Allium cepa and its main constituents. Pharmaceutical Biology, 59(1), 287–302. https://doi.org/10.1080/13880209.2021.1874028
- Marques, J. d. L., Volcão, L. M., Funck, G. D., Kroning, I. S., da Silva, W. P., Fiorentini, Â. M., & Ribeiro, G. A. (2015). Antimicrobial activity of essential oils of Origanum vulgare L. and Origanum majorana L. against Staphylococcus aureus isolated from poultry meat. Industrial Crops and Products, 77, 444–450. https://doi.org/10.1016/j.indcrop.2015.09.013
- Martins, N., Petropoulos, S., & Ferreira, I. C. F. R. (2016). Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chemistry, 211, 41–50. https://doi.org/10.1016/j.foodchem.2016.05.029
- Mathew, S., & Abraham, T. E. (2006). Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chemistry, 94(4), 520–528. https://doi.org/10.1016/j.foodchem.2004.11.043
- Mathlouthi, M. (2003). Encyclopedia of food sciences and nutrition (pp. 1918–1922). Academic Press. https://doi.org/10.1016/b0-12-227055-x/00369-2
- Medina, M. Á. T., Merinas-Amo, T., Fernández-Bedmar, Z., Font, R., del Río-Celestino, M., Pérez-Aparicio, J., Moreno-Ortega, A., Alonso-Moraga, Á., & Moreno-Rojas, R. (2019). Physicochemical characterization and biological activities of black and white garlic: in vivo and in vitro assays. Food, 8(6), 220.
- Messier, C., & Grenier, D. (2011). Effect of licorice compounds licochalcone a, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses, 54(6), 801–806. https://doi.org/10.1111/j.1439-0507.2011.02028.x
- Miceli, A., Aleo, A., Corona, O., Sardina, M. T., Mammina, C., & Settanni, L. (2014). Antibacterial activity of Borago officinalis and Brassica juncea aqueous extracts evaluated in vitro and in situ using different food model systems. Food Control, 40(1), 157–164. https://doi.org/10.1016/j.foodcont.2013.12.006
- Mimica-Dukic, N., & Bozin, B. (2008). Mentha L. species (Lamiaceae) as promising sources of bioactive secondary metabolites. Current Pharmaceutical Design, 14(29), 3141–3150. https://doi.org/10.2174/138161208786404245
- Mimica-Dukic, N., Bozin, B., Sokovic, M., Mihajlovic, B., & Matavulj, M. (2003). Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Medica, 69(5), 413–419. https://doi.org/10.1055/s-2003-39704
- Miraj, S., & Alesaeidi, S. (2016). A systematic review study of therapeutic effects of Matricaria recuitta chamomile (chamomile). Electronic Physician, 8(9), 3024–3031. https://doi.org/10.19082/3024
- Modarresi-Chahardehi, A., Ibrahim, D., Sulaiman, S. F., & Mousavi, L. (2012). Screening antimicrobial activity of various extracts of Urtica dioica. Revista de Biologia Tropical, 60(4), 1567–1576. https://doi.org/10.15517/rbt.v60i4.2074
- Moghrovyan, A., Sahakyan, N., Babayan, A., Chichoyan, N., Petrosyan, M., & Trchounian, A. (2019). Essential oil and ethanol extract of oregano (Origanum vulgare L.) from armenian flora as a natural source of terpenes, flavonoids and other phytochemicals with antiradical, antioxidant, metal chelating, tyrosinase inhibitory and antibacterial activity. Current Pharmaceutical Design, 25(16), 1809–1816. https://doi.org/10.2174/1381612825666190702095612
- Mohamad, R. H., El-Bastawesy, A. M., Abdel-Monem, M. G., Noor, A. M., Al-Mehdar, H. A. R., Sharawy, S. M., & El-Merzabani, M. M. (2011). Antioxidant and anticarcinogenic effects of methanolic extract and volatile oil of fennel seeds (Foeniculum vulgare). Journal of Medicinal Food, 14(9), 986–1001. https://doi.org/10.1089/jmf.2008.0255
- Mohammed, C. B., Chahid, B., Fatima, B., Fatima-Zohra, S., Meriem, B., & Farid, C. (2014). Antioxidant activity, phenolic and flavonoid content in leaves, flowers, stems and seeds of mallow (Malva sylvestris L.) from North Western of Algeria. African Journal of Biotechnology, 13(3), 486–491. https://doi.org/10.5897/ajb2013.12833
- Morales, P., Carvalho, A. M., Sánchez-Mata, M. C., Cámara, M., Molina, M., & Ferreira, I. C. F. R. (2012). Tocopherol composition and antioxidant activity of Spanish wild vegetables. Genetic Resources and Crop Evolution, 59(5), 851–863. https://doi.org/10.1007/s10722-011-9726-1
- Mousavi, S. M., Hashemi, S. A., Behbudi, G., Mazraedoost, S., Omidifar, N., Gholami, A., Chiang, W. H., Babapoor, A., & Pynadathu Rumjit, N. (2021). A review on health benefits of Malva sylvestris L. nutritional compounds for metabolites, antioxidants, and anti-inflammatory, anticancer, and antimicrobial applications. Evidence-Based Complementary and Alternative Medicine, 2021, 1–13. https://doi.org/10.1155/2021/5548404
- Msagati, T. A. M. (2013). Chemistry of food additives and preservatives ( 1st ed., pp. 224–243). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118274132
- Namshir, J., Shatar, A., Khandaa, O., Tserennadmid, R., Shiretorova, V. G., & Nguyen, M. C. (2020). Antimicrobial, antioxidant and cytotoxic activity on human breast cancer cells of essential oil from Pinus sylvestris. var mongolica needle. Mongolian Journal of Chemistry, 21(47), 19–26. https://doi.org/10.5564/mjc.v21i47.1428
- Narangerel, T., Bonikowski, R., Jastrz, K., Kunicka-styczy, A., Smigielski, K., Sójka, M., Bonikowski, R., Jastrząbek, K., Sroczyński, W., Plucińska, A., Kunicka-Styczyńska, A., Śmigielski, K., Majak, I., Bartos, A., Leszczyńska, J., Jastrz, K., Kunicka-styczy, A., & Smigielski, K. (2021). Chemical and biological characteristics of Oxytropis pseudoglandulosa plant of Mongolian origin. Molecules, 26(24), 7573. https://doi.org/10.3390/molecules26247573
- Narangerel, T., Sójka, M., Bonikowski, R., Jastrząbek, K., Sroczyński, W., Plucińska, A., Kunicka-Styczyńska, A., Śmigielski, K., Majak, I., Bartos, A., & Leszczyńska, J. (2021). Chemical and biological profile and allergenicity of Thymus baicalensis plant of Mongolian origin. Antioxidants, 10, 1905. https://doi.org/10.3390/antiox10121905
- Neidhart, M. (2016). DNA methylation and complex human disease (pp. 405–418). Elsevier Ltd. https://doi.org/10.1016/b978-0-12-420194-1.00025-7
- Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986–28006. https://doi.org/10.1039/c4ra13315c
- Nishimura, H., Higuchi, O., Tateshita, K., Tomobe, K., Okuma, Y., & Nomura, Y. (2006). Antioxidative activity and ameliorative effects of memory impairment of sulfur-containing compounds in allium species. BioFactors, 26(2), 135–146. https://doi.org/10.1002/biof.5520260204
- Nurzynska-Wierdak, R., & Zawislak, G. (2014). Herb yield and bioactive compounds of tarragon (Artemisia dracunculus L.) as influenced by plant density. Acta Science Polonorum, 13(2), 207–221.
- Nzeako, B. C., Al-Kharousi, Z. S. N., & Al-Mahrooqui, Z. (2006). Antimicrobial activities of clove and thyme extracts. Sultan Qaboos University Medical Journal, 6(1), 33–39.
- Obolskiy, D., Pischel, I., Feistel, B., Glotov, N., & Heinrich, M. (2011). Artemisia dracunculus L. (tarragon): A critical review of its traditional use, chemical composition, pharmacology, and safety. Journal of Agricultural and Food Chemistry, 59(21), 11367–11384. https://doi.org/10.1021/jf202277w
- Odontuya, G., & Nomin, M. (2018). Review analysis on phytochemical and biological activity studies on plants of aquilegia L. Bulletin of the Institute of Chemistry and Chemical Technology, 6, 64–71. https://doi.org/10.5564/bicct.v0i6.1103
- Oguro, Y., Yamazaki, H., Takagi, M., & Takaku, H. (2014). Antifungal activity of plant defensin AFP1 in Brassica juncea involves the recognition of the methyl residue in glucosylceramide of target pathogen Candida albicans. Current Genetics, 60(2), 89–97. https://doi.org/10.1007/s00294-013-0416-8
- Olennikov, D. N., & Chirikova, N. K. (2013). Phenolic compounds and cinnamamide from Scutellaria scordiifolia. Chemistry of Natural Compounds, 49(1), 124–126. https://doi.org/10.1007/s10600-013-0528-x
- Oniga, I., Pus, C., Silaghi-Dumitrescu, R., Olah, N. K., Sevastre, B., Marica, R., Marcus, I., Sevastre-Berghian, A. C., Benedec, D., Pop, C. E., & Hanganu, D. (2018). Origanum vulgare ssp. vulgare: Chemical composition and biological studies. Molecules, 23(8), 2077. https://doi.org/10.3390/molecules23082077
- Paaver, U., Orav, A., Arak, E., Mäeorg, U., & Raal, A. (2008). Phytochemical analysis of the essential oil of Thymus serpyllum L. growing wild in Estonia. Natural Product Research, 22(2), 108–115. https://doi.org/10.1080/14786410601035118
- Pandey, A. K., Rai, M. K., & Acharya, D. (2003). Chemical composition and antimycotic activity of the essential oils of corn mint (Mentha arvensis) and lemon grass (Cymbopogon flexuosus) against human pathogenic fungi. Pharmaceutical Biology, 41(6), 421–425. https://doi.org/10.1076/phbi.41.6.421.17825
- Parham, S., Kharazi, A. Z., Bakhsheshi-Rad, H. R., Nur, H., Ismail, A. F., Sharif, S., Ramakrishna, S., & Berto, F. (2020). Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants, 9(12), 1–36. https://doi.org/10.3390/antiox9121309
- Park, S. Y., Jang, H. L., Lee, J. H., Choi, Y., Kim, H., Hwang, J., Seo, D., Kim, S., & Nam, J. S. (2017). Changes in the phenolic compounds and antioxidant activities of mustard leaf (Brassica juncea) kimchi extracts during different fermentation periods. Food Science and Biotechnology, 26(1), 105–112. https://doi.org/10.1007/s10068-017-0014-5
- Parra, C., Muñoz, P., Bustos, L., Parra, F., Simirgiotis, M. J., & Escobar, H. (2021). UHPLC-DAD characterization of Origanum vulgare L. from Atacama desert Andean region and antioxidant, antibacterial and enzyme inhibition activities. Molecules, 26(7), 2100. https://doi.org/10.3390/molecules26072100
- Pârvu, M., Moţ, C. A., Pârvu, A. E., Mircea, C., Stoeber, L., Roşca-Casian, O., & Ţigu, A. B. (2019). Allium sativum extract chemical composition, antioxidant activity and antifungal effect against Meyerozyma guilliermondii and Rhodotorula mucilaginosa causing onychomycosis. Molecules, 24(21), 1–16. https://doi.org/10.3390/molecules24213958
- Pârvu, M., Pârvu, A. E., Vlase, L., Rosca-Casian, O., Pârvu, O., & Puşcaş, M. (2011). Allicin and alliin content and antifungal activity of Allium senescens L. ssp. montanum (F. W. Schmidt) Holub ethanol extract. Journal of Medicinal Plant Research, 5(29), 6544–6549. https://doi.org/10.5897/JMPR11.818
- Pastorino, G., Cornara, L., Soares, S., Rodrigues, F., & Oliveira, M. B. P. P. (2018). Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytotherapy Research, 32(12), 2323–2339. https://doi.org/10.1002/ptr.6178
- Pezzani, R., Vitalini, S., & Iriti, M. (2017). Bioactivities of Origanum vulgare L.: An update. Phytochemistry Reviews, 16(6), 1253–1268. https://doi.org/10.1007/s11101-017-9535-z
- Pitaro, S., Fiorani, L., & Jorge, N. (2013). Antioxidant activity of basil and oregano extracts added to soybean oil for accelerated storage test. Journal of Food Biochemistry, 37(4), 485–490. https://doi.org/10.1111/j.1745-4514.2012.00653.x
- Pitschmann, A., Purevsuren, S., Obmann, A., Natsagdorj, D., Gunbilig, D., Narantuya, S., Kletter, C., & Glasl, S. (2013). Traditional Mongolian medicine: History and status quo. Phytochemistry Reviews, 12(4), 943–959. https://doi.org/10.1007/s11101-013-9321-5
- Pitt, J. I., & Hocking, A. D. (2013). Fungi and food spoilage ( 1st ed.). Springer. https://doi.org/10.1007/978-0-387-92207-2
- Potente, G., Bonvicini, F., Gentilomi, G. A., & Antognoni, F. (2020). Anti-Candida activity of essential oils from Lamiaceae plants from the Mediterranean area and the Middle East. Antibiotics, 9(7), 1–26. https://doi.org/10.3390/antibiotics9070395
- Prados, J., Melguizo, C., Aranega, A., Boulaiz, H., & Marchal, J. (2005). Cancer gene therapy: Strategies and clinical trials. Cellular and Molecular Biology, 51(1), 23–36 https://europepmc.org/article/med/16171562
- Prakash, D., Singh, B. N., & Upadhyay, G. (2007). Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa). Food Chemistry, 102(4), 1389–1393. https://doi.org/10.1016/j.foodchem.2006.06.063
- Prakash, V., Kumari, A., Kaur, H., Kumar, M., Gupta, S., & Bala, R. (2021). Chemical composition and antimicrobial activity of essential oil from aerial parts of Origanum vulgare L. from North-Western Himalayas. Journal of Essential Oil-Bearing Plants, 24(2), 177–185. https://doi.org/10.1080/0972060X.2021.1919928
- Purcell, S. C., Pande, P., Lin, Y., Rivera, E. J., Latisha, P. U., Smallwood, L. M., Kerstiens, G. A., Armstrong, L. B., Robak, M. T., Baranger, A. M., & Douskey, M. C. (2016). Extraction and antibacterial properties of thyme leaf extracts: Authentic practice of green chemistry. Journal of Chemical Education, 93(8), 1422–1427. https://doi.org/10.1021/acs.jchemed.5b00891
- Qin, L., Yu, J., Zhu, J., Kong, B., & Chen, Q. (2021). Ultrasonic-assisted extraction of polyphenol from the seeds of Allium senescens L. and its antioxidative role in Harbin dry sausage. Meat Science, 172(August 2020), 108351. https://doi.org/10.1016/j.meatsci.2020.108351
- Rahimi, V. B., Ajam, F., Rakhshandeh, H., & Askari, V. R. (2019). A pharmacological review on Portulaca oleracea L.: Focusing on antiinflammatory, antioxidant, immunomodulatory and antitumor activities. Journal of Pharmacopuncture, 22(1), 7–15. https://doi.org/10.3831/KPI.2019.22.001
- Rasooli, I., & Allameh, A. (2016). Essential oils in food preservation, flavor and safety (pp. 287–293). Elsevier Inc. https://doi.org/10.1016/B978-0-12-416641-7.00032-8
- Razavi, S. M., Zarrini, G., Molavi, G., & Ghasemi, G. (2011). Bioactivity of Malva sylvestris L., a medicinal plant from Iran. Iranian Journal of Basic Medical Sciences, 14(6), 574–579. https://doi.org/10.22038/ijbms.2011.5058
- Roby, M. H. H., Sarhan, M. A., Selim, K. A. H., & Khalel, K. I. (2013). Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare L.) and chamomile (Matricaria chamomilla L.). Industrial Crops and Products, 44, 437–445. https://doi.org/10.1016/j.indcrop.2012.10.012
- Salehi, B., Stojanović-Radić, Z., Matejić, J., Sharopov, F., Antolak, H., Kręgiel, D., Sen, S., Sharifi-Rad, M., Acharya, K., Sharifi-Rad, R., Martorell, M., Sureda, A., Martins, N., & Sharifi-Rad, J. (2018). Plants of genus Mentha: From farm to food factory. Plants, 7(3), 70. https://doi.org/10.3390/plants7030070
- Salehzadeh, A., Asadpour, L., Naeemi, A. S., & Houshmand, E. (2014). Antimicrobial activity of methanolic extracts of Sambucus ebulus and Urtica dioica against clinical isolates of methicillin resistant Staphylococcus aureus. African Journal of Traditional, Complementary and Alternative Medicines, 11(5), 38–40. https://doi.org/10.4314/ajtcam.v11i5.6
- Samojlik, I., Lakić, N., Mimica-Dukić, N., Daković-Švajcer, K., & Božin, B. (2010). Antioxidant and hepatoprotective potential of essential oils of coriander (Coriandrum sativum L.) and caraway (Carum carvi L.) (Apiaceae). Journal of Agricultural and Food Chemistry, 58(15), 8848–8853. https://doi.org/10.1021/jf101645n
- Sánchez, M., González-Burgos, E., & Gómez-Serranillos, M. P. (2022). The pharmacology and clinical efficacy of Matricaria recutita L.: A systematic review of in vitro, in vivo studies and clinical trials. Food Reviews International, 38(8), 1668–1702. https://doi.org/10.1080/87559129.2020.1834577
- Sandulachi, E., Macari, A., Ghendov-Mosanu, A., Cojocari, D., & Sturza, R. (2021). Antioxidant and antimicrobial activity of basil, thyme and tarragon used in meat products. Advances in Microbiology, 11(11), 591–606. https://doi.org/10.4236/aim.2021.1111043
- Sanzani, S. M., Reverberi, M., & Geisen, R. (2016). Mycotoxins in harvested fruits and vegetables: Insights in producing fungi, biological role, conducive conditions, and tools to manage postharvest contamination. Postharvest Biology and Technology, 122, 95–105. https://doi.org/10.1016/j.postharvbio.2016.07.003
- Saruul, E., Murata, T., Selenge, E., Sasaki, K., Yoshizaki, F., & Batkhuu, J. (2015). An antibacterial ortho-quinone diterpenoid and its derivatives from Caryopteris mongolica. Bioorganic and Medicinal Chemistry Letters, 25(12), 2555–2558. https://doi.org/10.1016/j.bmcl.2015.04.048
- Sayed-Ahmad, B., Straumite, E., Šabovics, M., Kruma, Z., Merah, O., Saad, Z., Hijazi, A., & Talou, T. (2017). Effect of addition of fennel (Foeniculum vulgare L.) on the quality of protein bread. Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact, and Applied Sciences, 71(6), 509–514. https://doi.org/10.1515/prolas-2017-0088
- Scalas, D., Mandras, N., Roana, J., Tardugno, R., Cuffini, A. M., Ghisetti, V., Benvenuti, S., & Tullio, V. (2018). Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) essential oils and their main components to enhance itraconazole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains. BMC Complementary and Alternative Medicine, 18(1), 1–13. https://doi.org/10.1186/s12906-018-2219-4
- Sefidkon, F., Dabiri, M., & Mirmostafa, S. A. (2004). The composition of Thymus serpyllum L. oil. Journal of Essential Oil Research, 16(3), 184–185. https://doi.org/10.1080/10412905.2004.9698691
- Seidler-Łozykowska, K., Kedzia, B., Karpińska, E., & Bocianowski, J. (2013). A atividade microbiológica do óleo essencial de alcaravia (Carum carvi L.) de várias origens. Acta Scientiarum–Agronomy, 35(4), 495–500. https://doi.org/10.4025/actasciagron.v35i4.16900
- Shahat, A. A., Ibrahim, A. Y., Hendawy, S. F., Omer, E. A., Hammouda, F. M., Abdel-Rahman, F. H., & Saleh, M. A. (2011). Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules, 16(2), 1366–1377. https://doi.org/10.3390/molecules16021366
- Shams-Ghahfarokhi, M., Shokoohamiri, M. R., Amirrajab, N., Moghadasi, B., Ghajari, A., Zeini, F., Sadeghi, G., & Razzaghi-Abyaneh, M. (2006). In vitro antifungal activities of Allium cepa, Allium sativum and ketoconazole against some pathogenic yeasts and dermatophytes. Fitoterapia, 77(4), 321–323. https://doi.org/10.1016/j.fitote.2006.03.014
- Shan, B., Cai, Y. Z., Sun, M., & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry, 53(20), 7749–7759. https://doi.org/10.1021/jf051513y
- Shang, X., He, X., He, X., Li, M., Zhang, R., Fan, P., Zhang, Q., & Jia, Z. (2010). The genus Scutellaria an ethnopharmacological and phytochemical review. Journal of Ethnopharmacology, 128(2), 279–313. https://doi.org/10.1016/j.jep.2010.01.006
- Sharifi-Rad, J., Melgar-Lalanne, G., Hernández-Álvarez, A. J., Taheri, Y., Shaheen, S., Kregiel, D., Antolak, H., Pawlikowska, E., Brdar-Jokanović, M., Rajkovic, J., Hosseinabadi, T., Ljevnaić-Mašić, B., Baghalpour, N., Mohajeri, M., Fokou, P. V. T., & Martins, N. (2020). Malva species: Insights on its chemical composition towards pharmacological applications. Phytotherapy Research, 34(3), 546–567. https://doi.org/10.1002/ptr.6550
- Sharifi-Rad, M., Nazaruk, J., Polito, L., Morais-Braga, M. F. B., Rocha, J. E., Coutinho, H. D. M., Salehi, B., Tabanelli, G., Montanari, C., del Mar Contreras, M., Yousaf, Z., Setzer, W. N., Verma, D. R., Martorell, M., Sureda, A., & Sharifi-Rad, J. (2018). Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiological Research, 215(June), 76–88. https://doi.org/10.1016/j.micres.2018.06.010
- Sharma, K., Assefa, A. D., Kim, S., Ko, E. Y., Lee, E. T., & Park, S. W. (2014). Evaluation of total phenolics, flavonoids and antioxidant activity of 18 Korean onion cultivars: A comparative study. Journal of the Science of Food and Agriculture, 94(8), 1521–1529. https://doi.org/10.1002/jsfa.6450
- Sicari, V., Loizzo, M. R., Tundis, R., Mincione, A., & Pellicanò, T. M. (2018). Portulaca oleracea L. (purslane) extracts display antioxidant and hypoglycaemic effects. Journal of Applied Botany and Food Quality, 91, 39–46. https://doi.org/10.5073/JABFQ.2018.091.006
- Simmler, C., Pauli, G. F., & Chen, S. N. (2013). Phytochemistry and biological properties of glabridin. Fitoterapia, 90, 160–184. https://doi.org/10.1016/j.fitote.2013.07.003
- Singh, O., Khanam, Z., Misra, N., & Srivastava, M. K. (2011). Chamomile (Matricaria chamomilla L.): An overview. Pharmacognosy Reviews, 5(9), 82–95. https://doi.org/10.4103/0973-7847.79103
- Singh, P., & Pandey, A. K. (2018). Prospective of essential oils of the genus Mentha as biopesticides: A review. Frontiers in Plant Science, 9(September), 1–14. https://doi.org/10.3389/fpls.2018.01295
- Singh, V., Pal, A., & Darokar, M. P. (2015). A polyphenolic flavonoid glabridin: Oxidative stress response in multidrug-resistant Staphylococcus aureus. Free Radical Biology and Medicine, 87, 48–57. https://doi.org/10.1016/j.freeradbiomed.2015.06.016
- Siracusa, L., Saija, A., Cristani, M., Cimino, F., D'Arrigo, M., Trombetta, D., Rao, F., & Ruberto, G. (2011). Phytocomplexes from liquorice (Glycyrrhiza glabra L.) leaves–chemical characterization and evaluation of their antioxidant, anti-genotoxic and anti-inflammatory activity. Fitoterapia, 82(4), 546–556. https://doi.org/10.1016/j.fitote.2011.01.009
- Siriamornpun, S., & Suttajit, M. (2010). Microchemical components and antioxidant activity of different morphological parts of Thai wild purslane (Portulaca oleracea). Weed Science, 58(3), 182–188. https://doi.org/10.1614/ws-d-09-00073.1
- Sivapalan, S. R. (2016). Biological and pharmacological studies of Tribulus terrestris Linn- a review. International Journal of Multidisciplinary Research and Development, 3(1), 257–265.
- Soltani, S., Shakeri, A., Iranshahi, M., & Boozari, M. (2021). A review of the phytochemistry and antimicrobial properties of Origanum vulgare L. and subspecies. Iranian Journal of Pharmaceutical Research, 20(2), 268–285. https://doi.org/10.22037/ijpr.2020.113874.14539
- Souri, E., Amin, G., Farsam, H., & Andaji, S. (2004). The antioxidant activity of some commonly used vegetables in Iranian diet. Fitoterapia, 75(6), 585–588. https://doi.org/10.1016/j.fitote.2004.04.007
- Sriti, J., Wannes, W. A., Talou, T., Vilarem, G., & Marzouk, B. (2011). Chemical composition and antioxidant activities of Tunisian and Canadian coriander (Coriandrum sativum L.) fruit. Journal of Essential Oil Research, 23(4), 7–15. https://doi.org/10.1080/10412905.2011.9700462
- Stanojevic, L. P., Marjanovic-Balaban, Z. R., Kalaba, V. D., Stanojevic, J. S., & Cvetkovic, D. J. (2016). Chemical composition, antioxidant and antimicrobial activity of chamomile flowers essential oil (Matricaria chamomilla L.). Journal of Essential Oil-Bearing Plants, 19(8), 2017–2028. https://doi.org/10.1080/0972060X.2016.1224689
- Sturm, C., & Wagner, A. E. (2017). Brassica-derived plant bioactives as modulators of chemopreventive and inflammatory signaling pathways. International Journal of Molecular Sciences, 18(9), 1890. https://doi.org/10.3390/ijms18091890
- Sun, B., Tian, Y. X., Jiang, M., Yuan, Q., Chen, Q., Zhang, Y., Luo, Y., Zhang, F., & Tang, H. R. (2018). Variation in the main health-promoting compounds and antioxidant activity of whole and individual edible parts of baby mustard (Brassica juncea var. gemmifera). RSC Advances, 8(59), 33845–33854. https://doi.org/10.1039/C8RA05504A
- Szychowski, K. A., Rybczyńska-Tkaczyk, K., Gaweł-Bȩben, K., Ašwieca, M., Kara, M., Jakubczyk, A., Matysiak, M., Binduga, U. E., & Gmiński, J. (2018). Characterization of active compounds of different garlic (Allium sativum L.) cultivars. Polish Journal of Food and Nutrition Sciences, 68(1), 73–81. https://doi.org/10.1515/pjfns-2017-0005
- Tafrihi, M., Imran, M., Tufail, T., Gondal, T. A., Caruso, G., Sharma, S., Sharma, R., Atanassova, M., Atanassov, L., Fokou, P. V. T., & Pezzani, R. (2021). The wonderful activities of the genus Mentha: Not only antioxidant properties. Molecules, 26(4), 1–22. https://doi.org/10.3390/molecules26041118
- Teixeira, B., Marques, A., Ramos, C., Serrano, C., Matos, O., Neng, N. R., Nogueira, J. M. F., Saraiva, J. A., & Nunes, M. L. (2013). Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. Journal of the Science of Food and Agriculture, 93(11), 2707–2714. https://doi.org/10.1002/jsfa.6089
- Thiyam, U., Stöckmann, H., & Schwarz, K. (2006). Antioxidant activity of rapeseed phenolics and their interactions with tocopherols during lipid oxidation. Journal of the American Oil Chemists' Society, 83(6), 523–528. https://doi.org/10.1007/s11746-006-1235-6
- Thiyam, U., Stöckmann, H., Zum Felde, T., & Schwarz, K. (2006). Antioxidative effect of the main sinapic acid derivatives from rapeseed and mustard oil by-products. European Journal of Lipid Science and Technology, 108(3), 239–248. https://doi.org/10.1002/ejlt.200500292
- Tian, Y., & Deng, F. (2020). Phytochemistry and biological activity of mustard (Brassica juncea): A review. CyTA–Journal of Food, 18(1), 704–718. https://doi.org/10.1080/19476337.2020.1833988
- Tomović, V., Šojić, B., Savanović, J., Kocić-Tanackov, S., Pavlić, B., Jokanović, M., Đorđević, V., Parunović, N., Martinović, A., & Vujadinović, D. (2022). Caraway (Carum carvi L.) essential oil improves quality of dry-fermented sausages produced with different levels of sodium nitrite. Journal of Food Processing and Preservation, 46(10), e15786. https://doi.org/10.1111/jfpp.15786
- Tsivelika, N., Irakli, M., Mavromatis, A., Chatzopoulou, P., & Karioti, A. (2021). Phenolic profile by HPLC-PDA-MS of Greek chamomile populations and commercial varieties and their antioxidant activity. Food, 10(10), 2345. https://doi.org/10.3390/foods10102345
- Varma, J., & Dubey, N. K. (2001). Efficacy of essential oils of Caesulia axillaris and Mentha arvensis against some storage pests causing biodeterioration of food commodities. International Journal of Food Microbiology, 68(3), 207–210. https://doi.org/10.1016/S0168-1605(01)00506-2
- Wang, W., Li, J., Zhang, H., Wang, X., Fan, J., & Zhang, X. (2019). Phenolic compounds and bioactivity evaluation of aqueous and methanol extracts of Allium mongolicum regel. Food Science and Nutrition, 7(2), 779–787. https://doi.org/10.1002/fsn3.926
- Wang, Z. F., Wang, B. B., Zhao, Y., Wang, F. X., Sun, Y., Guo, R. J., Song, X. B., Xin, H. L., & Sun, X. G. (2016). Furostanol and spirostanol saponins from Tribulus terrestris. Molecules, 21(4), 3–16. https://doi.org/10.3390/molecules21040429
- Węglarz, Z., Kosakowska, O., Przybył, J. L., Pióro-Jabrucka, E., & Bączek, K. (2020). The quality of Greek oregano (O. vulgare L. subsp. hirtum (link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare) cultivated in the temperate climate of Central Europe. Food, 9(11), 1671. https://doi.org/10.3390/foods9111671
- WHO. (2008). Safety evaluation of certain food additives and contaminants. https://apps.who.int/food-additives-contaminants-jecfa-database/chemical.aspx?chemID=1905
- WHO. (2013). Medicinal plants in Mongolia. https://apps.who.int/iris/bitstream/handle/10665/207671/9789290616320_eng.pdf
- Woo, K. W., Moon, E., Park, S. Y., Kim, S. Y., & Lee, K. R. (2012). Flavonoid glycosides from the leaves of Allium victorialis var. platyphyllum and their anti-neuroinflammatory effects. Bioorganic and Medicinal Chemistry Letters, 22(24), 7465–7470. https://doi.org/10.1016/j.bmcl.2012.10.043
- Xu, Y. J. (2017). Foodomics: A novel approach for food microbiology. TrAC–Trends in Analytical Chemistry, 96, 14–21. https://doi.org/10.1016/j.trac.2017.05.012
- Yu, J., Lei, J., Yu, H., Cai, X., & Zou, G. (2004). Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata. Phytochemistry, 65(7), 881–884. https://doi.org/10.1016/j.phytochem.2004.02.005
- Zare, M., Mirzakhani, M. K., & Stejskal, V. (2021). Growth, body proximate composition and selected blood parameters of rainbow trout Onchorhynchus mykiss fingerlings fed on a diet supplemented with nettle Urtica dioica and tarragon Artemisia dracunculus. Aquaculture Research, 52(11), 5691–5702. https://doi.org/10.1111/are.15444
- Zeeshan Amanullah, K., Zeenat, F., Ahmad, W., Firoz, S., Naeela, A., & Author, C. (2021). A comprehensive review on a Unani medicinal plant: Tribulus terrestris Linn. International Journal of Herbal Medicine, 9(1), 23–28 https://www.florajournal.com/archives/2021/vol9issue1/PartA/8-5-15-149.pdf
- Zeljković, S. Ć., Šišková, J., Komzáková, K., De Diego, N., Kaffková, K., & Tarkowski, P. (2021). Phenolic compounds and biological activity of selected Mentha species. Plants, 10(3), 1–18. https://doi.org/10.3390/plants10030550
- Zhang, X. L., Guo, Y. S., Wang, C. H., Li, G. Q., Xu, J. J., Chung, H. Y., Ye, W. C., Li, Y. L., & Wang, G. C. (2014). Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chemistry, 152, 300–306. https://doi.org/10.1016/j.foodchem.2013.11.153
- Zhen-yu, W. (2005). Impact of anthocyanin from Malva sylvestris on plasma lipids and free radical. Journal of Forestry Research, 16(3), 228–232. https://doi.org/10.1007/bf02856821
- Zhou, Y. X., Xin, H. L., Rahman, K., Wang, S. J., Peng, C., & Zhang, H. (2015). Portulaca oleracea L.: A review of phytochemistry and pharmacological effects. BioMed Research International, 2015, 925631. https://doi.org/10.1155/2015/925631
- Zolboo, B., Tsenguunmaa, L., Undram, O., & Batkhuu, J. (2015). Quorum sensing screening of some medicinal plants from Mongolia. Mongolian Journal of Agricultural Sciences, 13(2), 63–65. https://doi.org/10.5564/mjas.v13i2.518