AOP Report: Glutathione Conjugation Leading to Reproductive Dysfunction via Oxidative Stress
Leonardo R. Vieira
Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
Search for more papers by this authorTerezinha Souza
Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
Search for more papers by this authorCorresponding Author
Davi F. Farias
Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
Address correspondence to [email protected]
Search for more papers by this authorLeonardo R. Vieira
Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
Search for more papers by this authorTerezinha Souza
Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
Search for more papers by this authorCorresponding Author
Davi F. Farias
Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
Address correspondence to [email protected]
Search for more papers by this authorAbstract
We propose an adverse outcome pathway (AOP) for reproductive dysfunction via oxidative stress (OS). The AOP was developed based on Organisation for Economic Co-operation and Development (OECD) Guidance Document 184 and on the specific considerations of the OECD users' handbook supplement to the guidance document for developing and assessing AOPs (no. 233). According to the qualitative and quantitative experimental data evaluation, glutathione (GSH) conjugation is the first upstream key event (KE) of this AOP to reproductive dysfunction triggering OS. This event causes depletion of GSH basal levels (KE2). Consequently, this drop of free GSH induces an increase of reactive oxygen species (KE3) generated by the natural cellular metabolic processes (cellular respiration) of the organism. Increased levels of these reactive species, in turn, induce an increase of lipid peroxidation (KE4). This KE consequently leads to a rise in the amount of toxic substances, such as malondialdehyde and hydroxynonenal, which are associated with decreased quality and competence of gamete cell division, consequently impairing fertility (KE5 and adverse outcome). The overall assessment of the general biological plausibility, the empirical support, and the essentiality of KE relationships was considered as high for this AOP. We conclude that GSH conjugation is able to lead to reproductive disorder in fishes and mammals, via OS, but that the amount of stressor needed to trigger the AOP differs between stressors. Environ Toxicol Chem 2023;42:2519–2528. © 2023 SETAC
Supporting Information
This article includes online-only Supporting Information.
Filename | Description |
---|---|
etc5751-sup-0001-R2_Snapshot_492_2023_09_14.pdf289 KB | R2 Snapshot 492-2023-09-14.pdf. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Abarikwu, S. O., Adesiyan, A. C., Oyeloja, T. O., Oyeyemi, M. O., & Farombi, E. O. (2010). Changes in sperm characteristics and induction of oxidative stress in the testis and epididymis of experimental rats by a herbicide, atrazine. Archives of Environmental Contamination and Toxicology, 58(3), 874–882.
- Adeoye, O., Olawumi, J., Opeyemi, A., & Christiania, O. (2018). Review on the role of glutathione on oxidative stress and infertility. JBRA Assisted Reproduction, 22(1), 61–66.
- Afzal, M., Afzal, A., Jones, A., & Armstrong, D. (2002). A rapid method for the quantification of GSH and GSSG in biological samples. Methods in Molecular Biology, 186, 117–122.
- Agarwal, A., Gupta, S., & Sharma, R. K. (2005). Role of oxidative stress in female reproduction. Reproductive Biology and Endocrinology, 3, Article 28.
- Aitken, R. J., Wingate, J. K., De Iuliis, G. N., & McLaughlin, E. A. (2007). Analysis of lipid peroxidation in human spermatozoa using BODIPY C11. Molecular Human Reproduction, 13(4), 203–211.
- Ankley, G. T., Bennett, R. S., Erickson, R. J., Hoff, D. J., Hornung, M. W., Johnson, R. D., & Villeneuve, D. L. (2010). Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environmental Toxicology and Chemistry, 29(3), 730–741.
- Armstrong, J. S., Steinauer, K. K., Hornung, B., Irish, J. M., Lecane, P., Birrell, G. W., Peehl, D. M., & Knox, S. J. (2002). Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death & Differentiation, 9, 252–263. https://doi.org/10.1038/sj.cdd.4400959
- Bisht, S., Faiq, M., Tolahunase, M., & Dada, R. (2017). Oxidative stress and male infertility. Nature Reviews Urology, 14(8), 470–485.
- Böhme, A., Thaens, D., Paschke, A., & Schüürmann, G. (2009). Kinetic glutathione chemoassay to quantify thiol reactivity of organic electrophiles—Application to α,β-unsaturated ketones, acrylates, and propiolates. Chemical Research in Toxicology, 22(4), 742–750.
- Boujbiha, M. A., Hamden, K., Guermazi, F., Bouslama, A., Omezzine, A., Kammoun, A., & Feki, A. E. (2009). Testicular toxicity in mercuric chloride treated rats: Association with oxidative stress. Reproductive Toxicology, 28(1), 81–89.
- Csanády, G. A., Kreuzer, P. E., Baur, C., & Filser, J. G. (1996). A physiological toxicokinetic model for 1,3-butadiene in rodents and man: Blood concentrations of 1,3-butadiene, its metabolically formed epoxides, and of haemoglobin adducts—relevance of glutathione depletion. Toxicology, 113(1–3), 300–305. https://doi.org/10.1016/0300-483x(96)03461-0
- Dai, M., Xie, P., Liang, G., Chen, J., & Lei, H. (2008). Simultaneous determination of microcystin-LR and its glutathione conjugate in fish tissues by liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, 862(1–2), 43–50.
- Delrue, N., Sachana, M., Sakuratani, Y., Gourmelon, A., Leinala, E., & Diderich, R. (2016). The adverse outcome pathway concept: A basis for developing regulatory decision-making tools. Alternatives to Laboratory Animals, 44(5), 417–429.
- Dionisio, G., Gautam, M., & Fomsgaard, I. S. (2019). Identification of azoxystrobin glutathione conjugate metabolites in maize roots by LC-MS. Molecules, 24(13), Article 2473. https://doi.org/10.3390/molecules24132473
- D'Souza, R. W., & Andersen, M. E. (1988). Physiologically based pharmacokinetic model for vinylidene chloride. Toxicology and Applied Pharmacology, 95(2), 230–240.
- D'Souza, R. W., Francis, W. R., & Andersen, M. E. (1988). Physiological model for tissue glutathione depletion and increased resynthesis after ethylene dichloride exposure. The Journal of Pharmacology and Experimental Therapeutics, 245(2), 563–568.
- Edwards, S. W., Tan, Y. M., Villeneuve, D. L., Meek, M. E., & McQueen, C. A. (2016). Adverse outcome pathways—Organizing toxicological information to improve decision Making. The Journal of Pharmacology and Experimental Therapeutics, 356(1), 170–181.
- Fennell, T. R., & Brown, C. D. (2001). A physiologically based pharmacokinetic model for ethylene oxide in mouse, rat, and human. Toxicology and Applied Pharmacology, 173(3), 161–175.
- Ford, R. J., Graham, D. A., Denniss, S. G., Quadrilatero, J., & Rush, J. W. E. (2006). Glutathione depletion in vivo enhances contraction and attenuates endothelium-dependent relaxation of isolated rat aorta. Free Radical Biology & Medicine, 40(4), 670–678.
- Garratt, M., Bathgate, R., de Graaf, S. P., & Brooks, R. C. (2013). Copper–zinc superoxide dismutase deficiency impairs sperm motility and in vivo fertility. Reproduction, 146(4), 297–304.
- Geenen, S., Yates, J. W. T., Kenna, J. G., Bois, F. Y., Wilson, I. D., & Westerhoff, H. V. (2013). Multiscale modelling approach combining a kinetic model of glutathione metabolism with PBPK models of paracetamol and the potential glutathione-depletion biomarkers ophthalmic acid and 5-oxoproline in humans and rats. Integrative Biology: Quantitative Biosciences from Nano to Macro, 5(6), 877–888.
- Gomez, E., Irvine, D. S., & Aitken, R. J. (1998). Evaluation of a spectrophotometric assay for the measurement of malondialdehyde and 4-hydroxyalkenals in human spermatozoa: Relationships with semen quality and sperm function. International Journal of Andrology, 21(2), 81–94.
- Griendling, K. K., Touyz, R. M., Zweier, J. L., Dikalov, S., Chilian, W., Chen, Y. R., Harrison, D. G., Bhatnagar, A., & American Heart Association Council on Basic Cardiovascular Sciences. (2016). Measurement of reactive oxygen species, reactive nitrogen species, and redox-dependent signaling in the cardiovascular system: A scientific statement from the American Heart Association. Circulation Research, 119(5), e39–e75.
- Han, D., Hanawa, N., Saberi, B., & Kaplowitz, N. (2006). Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. American Journal of Physiology: Gastrointestinal and Liver Physiology, 291(1), G1–G7.
- Hsieh, Y. Y., Chang, C. C., & Lin, C. S. (2006). Seminal malondialdehyde concentration but not glutathione peroxidase activity is negatively correlated with seminal concentration and motility. International Journal of Biological Sciences, 2(1), 23–29.
- Hughes, T. B., Miller, G. P., & Swamidass, S. J. (2015). Site of reactivity models predict molecular reactivity of diverse chemicals with glutathione. Chemical Research in Toxicology, 28(4), 797–809.
- Ibrahim, A. T. A., Banaee, M., & Sureda, A. (2019). Selenium protection against mercury toxicity on the male reproductive system of Clarias gariepinus. Comparative Biochemistry and Physiology: Toxicology & Pharmacology, 225, Article 108583.
- Imai, H., Hakkaku, N., Iwamoto, R., Suzuki, J., Suzuki, T., Tajima, Y., & Nakagawa, Y. (2009). Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice. Journal of Biological Chemistry, 284(47), 32522–32532.
- Jin, Y., Zhang, X., Shu, L., Chen, L., Sun, L., Qian, H., Liu, W., & Fu, Z. (2010). Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere, 78(7), 846–852.
- Kalia, S., & Bansal, M. P. (2008). Diethyl maleate–induced oxidative stress leads to testicular germ cell apoptosis involving Bax and Bcl-2. Journal of Biochemical and Molecular Toxicology, 22(6), 371–381.
- Kaur, P., Kalia, S., & Bansal, M. P. (2006). Effect of diethyl maleate induced oxidative stress on male reproductive activity in mice: Redox active enzymes and transcription factors expression. Molecular and Cellular Biochemistry, 291(1–2), 55–61.
- Li, L., Zhong, S., Shen, X., Li, Q., Xu, W., Tao, Y., & Yin, H. (2019). Recent development on liquid chromatography–mass spectrometry analysis of oxidized lipids. Free Radical Biology & Medicine, 144, 16–34.
- Lim, J., Ali, S., Liao, L. S., Nguyen, E. S., Ortiz, L., Reshel, S., & Luderer, U. (2020). Antioxidant supplementation partially rescues accelerated ovarian follicle loss, but not oocyte quality, of glutathione-deficient mice. Biology of Reproduction, 102(5), 1065–1079.
- Lim, J., Nakamura, B. N., Mohar, I., Kavanagh, T. J., & Luderer, U. (2015). Glutamate cysteine ligase modifier subunit (Gclm) null mice have increased ovarian oxidative stress and accelerated age-related ovarian failure. Endocrinology, 156(9), 3329–3343.
- Liu, J., Bao, C., Zhong, X., Zhao, C., & Zhu, L. (2010). Highly selective detection of glutathione using a quantum-dot-based OFF–ON fluorescent probe. Chemical Communications, 46(17), 2971–2973.
- Liu, Z., Lv, X., Song, E., & Song, Y. (2020). Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicology and Applied Pharmacology, 407, Article 115241.
- Lopez, S. G., & Luderer, U. (2004). Effects of cyclophosphamide and buthionine sulfoximine on ovarian glutathione and apoptosis. Free Radical Biology and Medicine, 36(11), 1366–1377.
- Lu, J., Wang, Z., Cao, J., Chen, Y., & Dong, Y. (2018). A novel and compact review on the role of oxidative stress in female reproduction. Reproductive Biology and Endocrinology, 16(1), Article 80.
- Mandal, T. K., & Das, N. S. (2011). Correlation of testicular toxicity and oxidative stress induced by chlorpyrifos in rats. Human & Experimental Toxicology, 30(10), 1529–1539.
- Massarsky, A., Kozal, J. S., & Di Giulio, R. T. (2017). Glutathione and zebrafish: Old assays to address a current issue. Chemosphere, 168, 707–715.
- Mayer, R. J., & Ofial, A. R. (2019). Nucleophilicity of glutathione: A link to Michael acceptor reactivities. Angewandte Chemie International Edition, 58(49), 17704–17708.
- McMullin, T. S., Hanneman, W. H., Cranmer, B. K., Tessari, J. D., & Andersen, M. E. (2007). Oral absorption and oxidative metabolism of atrazine in rats evaluated by physiological modeling approaches. Toxicology, 240(1–2), 1–14.
- Mihalas, B. P., De Iuliis, G. N., Redgrove, K. A., McLaughlin, E. A., & Nixon, B. (2017). The lipid peroxidation product 4-hydroxynonenal contributes to oxidative stress-mediated deterioration of the ageing oocyte. Scientific Reports, 7(1), Article 6247.
- Mulder, G. J., & Ouwerkerk-Mahadevan, S. (1997). Modulation of glutathione conjugation in vivo: How to decrease glutathione conjugation in vivo or in intact cellular systems in vitro. Chemico-Biological Interactions, 105(1), 17–34.
- Murphy, M. P., Bayir, H., Belousov, V., Chang, C. J., Davies, K. J., Davies, M. J., & Halliwell, B. (2022). Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nature Metabolism, 4(6), 651–662.
- Nakamura, B. N., Fielder, T. J., Hoang, Y. D., Lim, J., McConnachie, L. A., Kavanagh, T. J., & Luderer, U. (2011). Lack of maternal glutamate cysteine ligase modifier subunit (Gclm) decreases oocyte glutathione concentrations and disrupts preimplantation development in mice. Endocrinology, 152(7), 2806–2815.
- Nakamura, B. N., Lawson, G., Chan, J. Y., Banuelos, J., Cortés, M. M., Hoang, Y. D., & Luderer, U. (2010). Knockout of the transcription factor NRF2 disrupts spermatogenesis in an age-dependent manner. Free Radical Biology and Medicine, 49(9), 1368–1379.
- Organisation for Economic Co-Operation and Development. (2012). Test No. 229: Fish short term reproduction assay. OECD Guidelines for the Testing of Chemicals.
- Organisation for Economic Co-Operation and Development. (2015). Test No. 240: Medaka extended one generation reproduction test (MEOGRT). OECD Guidelines for the Testing of Chemicals.
- Organisation for Economic Co-Operation and Development. (2017). Revised guidance document on developing and assessing adverse outcome pathways (Series on Testing and Assessment No. 184).
- Organisation for Economic Co-Operation and Development. (2018). Users' handbook supplement to the guidance document for developing and assessing adverse outcome pathways. https://doi.org/10.1787/5jlv1m9d1g32-en
10.1787/5jlv1m9d1g32-en Google Scholar
- Pallante, S. L., Lisek, C. A., Dulik, D. M., & Fenselau, C. (1986). Glutathione conjugates. immobilized enzyme synthesis and characterization by fast atom bombardment mass spectrometry. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 14(3), 313–318.
- Park, E. J., & Park, K. (2007). Induction of reactive oxygen species and apoptosis in BEAS-2B cells by mercuric chloride. Toxicology In Vitro, 21(5), 789–794.
- Pflugmacher, S., Wiegand, C., Oberemm, A., Beattie, K. A., Krause, E., Codd, G. A., & Steinberg, C. E. (1998). Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: The first step of detoxication. Biochimica et Biophysica Acta, 1425(3), 527–533.
- Plakunov, I., Smolarek, T. A., Fischer, D. L., Wiley, Jr., J. C., & Baird, W. M. (1987). Separation by ion-pair high-performance liquid chromatography of the glucuronide, sulfate and glutathione conjugates formed from benzo[a]pyrene in cell cultures from rodents, fish and humans. Carcinogenesis, 8(1), 59–66.
- Rahman, K. (2007). Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging, 2(2), 219–236.
- Rajasekaran, N. S., Devaraj, N. S., & Devaraj, H. (2004). Modulation of rat erythrocyte antioxidant defense system by buthionine sulfoximine and its reversal by glutathione monoester therapy. Biochimica et Biophysica Acta, 1688(2), 121–129.
- Sajjadian, F., Roshangar, L., Hemmati, A., Nori, M., Soleimani-Rad, S., & Soleimani-Rad, J. (2014). The effect of BSO-induced oxidative stress on histologic feature of testis: Testosterone secretion and semen parameters in mice. Iranian Journal of Basic Medical Sciences, 17(8), 606–612.
- Schneider, M., Forster, H., Boersma, A., Seiler, A., Wehnes, H., Sinowatz, F., & Conrad, M. (2009). Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB Journal, 23(9), 3233–3242.
- Schultz, T. W., Carlson, R. E., Cronin, M. T. D., Hermens, J. L. M., Johnson, R., O'Brien, P. J., Roberts, D. W., Siraki, A., Wallace, K. B., & Veith, G. D. (2006). A conceptual framework for predicting the toxicity of reactive chemicals: Modeling soft electrophilicity. SAR and QSAR in Environmental Research, 17(4), 413–428.
- Selvaratnam, J. S., & Robaire, B. (2016). Effects of aging and oxidative stress on spermatozoa of superoxide-dismutase 1– and catalase-null mice. Biology of Reproduction, 95(3), 60–61.
- Sharma, G., Rana, N. K., Singh, P., Dubey, P., Pandey, D. S., & Koch, B. (2017). p53 dependent apoptosis and cell cycle delay induced by heteroleptic complexes in human cervical cancer cells. Biomedicine & Pharmacotherapy, 88, 218–231.
- Song, Y., Jia, Z. C., Chen, J. Y., Hu, J. X., & Zhang, L. S. (2014). Toxic effects of atrazine on reproductive system of male rats. Biomedical and Environmental Sciences, 27(4), 281–288.
- Spahiu, L., Ålander, J., Ottosson-Wadlund, A., Svensson, R., Lehmer, C., Armstrong, R. N., & Morgenstern, R. (2017). Global kinetic mechanism of microsomal glutathione transferase 1 and insights into dynamic enzyme activation. Biochemistry, 56(24), 3089–3098.
- Summer, K. H., Rozman, K., Coulston, F., & Greim, H. (1979). Urinary excretion of mercapturic acids in chimpanzees and rats. Toxicology and Applied Pharmacology, 50(2), 207–212.
- Tan, S., Sagara, Y., Liu, Y., Maher, P., & Schubert, D. (1998). The regulation of reactive oxygen species production during programmed cell death. The Journal of Cell Biology, 141(6), 1423–1432.
- Tirmenstein, M. A., Nicholls-Grzemski, F. A., Zhang, J. G., & Fariss, M. W. (2000). Glutathione depletion and the production of reactive oxygen species in isolated hepatocyte suspensions. Chemico-Biological Interactions, 127(3), 201–217.
- Trachootham, D., Lu, W., Ogasawara, M. A., Nilsa, R. D. V., & Huang, P. (2008). Redox regulation of cell survival. Antioxidants & Redox Signaling, 10(8), 1343–1374.
- Wang, L., Tang, J., Wang, L., Tan, F., Song, H., Zhou, J., & Li, F. (2021). Oxidative stress in oocyte aging and female reproduction. Journal of Cellular Physiology, 236(12), 7966–7983.
- Wiegand, C., Krause, E., Steinberg, C., & Pflugmacher, S. (2001). Toxicokinetics of atrazine in embryos of the zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 49(3), 199–205.
- Yin, H., Xu, L., & Porter, N. A. (2011). Free radical lipid peroxidation: Mechanisms and analysis. Chemical Reviews, 111(10), 5944–5972.
- Zhang, Q. F., Li, Y. W., Liu, Z. H., & Chen, Q. L. (2016). Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic–pituitary–gonadal axis. Aquatic Toxicology, 177, 417–424.
- Zhao, F., Li, K., Zhao, L., Liu, J., Suo, Q., Zhao, J., Wang, H., & Zhao, S. (2014). Effect of Nrf2 on rat ovarian tissues against atrazine-induced anti-oxidative response. International Journal of Clinical and Experimental Pathology, 7(6), 2780–2789.
- Zubkova, E. V., & Robaire, B. (2004). Effect of glutathione depletion on antioxidant enzymes in the epididymis, seminal vesicles, and liver and on spermatozoa motility in the aging brown Norway rat. Biology of Reproduction, 71(3), 1002–1008.