Review on the application of green and environmentally benign biowaste and natural substances in the synthesis of lithium-ion batteries
Ngo Tran
Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
Faculty of Natural Sciences, Duy Tan University, Da Nang, Viet Nam
Search for more papers by this authorCorresponding Author
Qui T. H. Ta
Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
Correspondence
Qui T. H. Ta, Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
Email: [email protected]
Vinh Van Tran, Advanced Institute of Science and Technology, The University of Da Nang, Da Nang 550000, Viet Nam.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Vinh Van Tran
Advanced Institute of Science and Technology, The University of Da Nang, Da Nang, Viet Nam
Correspondence
Qui T. H. Ta, Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
Email: [email protected]
Vinh Van Tran, Advanced Institute of Science and Technology, The University of Da Nang, Da Nang 550000, Viet Nam.
Email: [email protected]
Search for more papers by this authorNgo Tran
Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
Faculty of Natural Sciences, Duy Tan University, Da Nang, Viet Nam
Search for more papers by this authorCorresponding Author
Qui T. H. Ta
Department of Physics, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
Correspondence
Qui T. H. Ta, Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
Email: [email protected]
Vinh Van Tran, Advanced Institute of Science and Technology, The University of Da Nang, Da Nang 550000, Viet Nam.
Email: [email protected]
Search for more papers by this authorCorresponding Author
Vinh Van Tran
Advanced Institute of Science and Technology, The University of Da Nang, Da Nang, Viet Nam
Correspondence
Qui T. H. Ta, Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
Email: [email protected]
Vinh Van Tran, Advanced Institute of Science and Technology, The University of Da Nang, Da Nang 550000, Viet Nam.
Email: [email protected]
Search for more papers by this authorSummary
Environmental pollution and global warming have propelled the research activities toward the substitution of toxic materials with environmentally acceptable components in various spheres. Lithium-ion battery (LIB) is exorbitantly used in different electronic devices in the present era and thus generates huge toxic electronic waste, which has become a global concern. Different approaches have been put forward to replace the commonly used materials for the fabrication of LIBs with processed biomass. This review discusses the significance and application of different biomass for fabricating electrodes and binders for LIBs. The electrochemical properties of the developed LIBs have also been discussed in detail. In addition, the required improvements have been put forth, so that biomass can be extensively used in future LIB to reduce the amount of generated toxic electronic wastes.
Highlights
- Application of biowaste for the synthesis of Li-ion battery.
- Morphology of the synthesized materials.
- Electrochemical properties of the synthesized materials.
- Efficiency of the natural products as components in Li-ion batteries.
- The environmental safety of the materials as LIB components
CONFLICT OF INTERESTS
The authors declare no conflicts of interest.
REFERENCES
- 1Nikoobakht A, Aghaei J, Khatami R, Mahboubi-Moghaddam E, Parvania M. Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources. Appl Energy. 2019; 238: 225-238. doi:10.1016/j.apenergy.2018.12.089
- 2Notton G, Nivet M-L, Voyant C, et al. Intermittent and stochastic character of renewable energy sources: consequences, cost of intermittence and benefit of forecasting. Renew Sustain Energy Rev. 2018; 87: 96-105.
- 3Anastas PT, Warner JC. Green Chemistry: Theory and Practice. Vol 30. New York: Oxford University Press; 1998.
- 4Warner JC. 20 Years of Green Chemistry Innovation and Entrepreneurship. Germany Technische Universität Berlin 2018.
- 5Amirante R, Cassone E, Distaso E, Tamburrano P. Overview on recent developments in energy storage: mechanical, electrochemical and hydrogen technologies. Energ Conver Manage. 2017; 132: 372-387. doi:10.1016/j.enconman.2016.11.046
- 6Diouf B, Pode R. Potential of lithium-ion batteries in renewable energy. Renew Energy. 2015; 76: 375-380. doi:10.1016/j.renene.2014.11.058
- 7Armand J-MT, Tarascon MJ-M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001; 414: 359-367.
- 8Nyholm L, Nyström G, Mihranyan A, Strømme M. Toward flexible polymer and paper-based energy storage devices. Adv Mater. 2011; 23: 3751-3769. doi:10.1002/adma.201004134
- 9Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015; 7: 19-29. doi:10.1038/nchem.2085
- 10Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010; 22: 587-603. doi:10.1021/cm901452z
- 11Yu Y, Karayaylali P, Katayama Y, et al. Coupled LiPF6 decomposition and carbonate dehydrogenation enhanced by highly covalent metal oxides in high-energy Li-ion batteries. J Phys Chem C. 2018; 122: 27368-27382. doi:10.1021/acs.jpcc.8b07848
- 12Konarov A, Jo JH, Choi JU, et al. Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries. Nano Energy. 2019; 59: 197-206. doi:10.1016/j.nanoen.2019.02.042
- 13Perassi EM, Leiva EPM. Capacity fading model for a solid electrolyte interface with surface growth. Electrochim Acta. 2019; 308: 418-425. doi:10.1016/j.electacta.2019.03.202
- 14Wood DL, Li J, Daniel C. Prospects for reducing the processing cost of lithium ion batteries. J Power Sources. 2015; 275: 234-242. doi:10.1016/j.jpowsour.2014.11.019
- 15Wang K, Luo S, Wu Y, et al. Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv Funct Mater. 2013; 23: 846-853. doi:10.1002/adfm.201202412
- 16Li J. Technical and economic analysis of solvent-based lithium-ion electrode drying with water and NMP. Paper presented at the 35th Annual International Battery Seminar and Exhibit 2018. 2018; 2: 757–762.
- 17Baunach M, Jaiser S, Schmelzle S, Nirschl H, Scharfer P, Schabel W. Delamination behavior of lithium-ion battery anodes: influence of drying temperature during electrode processing. Drying Technol. 2016; 34: 462-473.
- 18Zheng P, Li Z, Qiao R, Ellis MW. The Design and Optimization of a Lithium-Ion Battery Direct Recycling Process [Master thesis]. Virginia Tech; 2019. https://vtechworks.lib.vt.edu/handle/10919/93212
- 19Taskin OS, Hubble D, Zhu T, Liu G. Biomass-derived polymeric binders in silicon anodes for battery energy storage applications. Green Chem. 2021; 23: 7890-7901. doi:10.1039/d1gc01814k
- 20Liedel C. Sustainable battery materials from biomass. ChemSusChem. 2020; 13: 2110-2141. doi:10.1002/cssc.201903577
- 21Nzereogu PU, Omah AD, Ezema FI, Iwuoha EI, Nwanya AC. Anode materials for lithium-ion batteries: a review. Appl Surf Sci Adv. 2022; 9:100233. doi:10.1016/j.apsadv.2022.100233
10.1016/j.apsadv.2022.100233 Google Scholar
- 22Pradeep N, Sivasenthil E, Janarthanan B, Sharmila S. A review of anode material for lithium ion batteries. J Phys Conf Ser. 2019; 1362:012026. doi:10.1088/1742-6596/1362/1/012026
- 23Lu J, Chen Z, Pan F, Cui Y, Amine K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem Energy Rev. 2018; 1: 35-53. doi:10.1007/s41918-018-0001-4
- 24Chang H, Wu Y-R, Han X, Yi T-F. Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater. 2021; 1:100003. doi:10.20517/energymater.2021.02
- 25Soge AO. Anode materials for lithium-based batteries: a review. J Mater Sci Res Rev. 2020; 5: 21-39.
- 26Sui D, Si L, Li C, Yang Y, Zhang Y, Yan W. A comprehensive review of graphene-based anode materials for lithium-ion capacitors. Chemistry. 2021; 3: 1215-1246. doi:10.3390/chemistry3040089
- 27Mou H, Xiao W, Miao C, Li R, Yu L. Tin and tin compound materials as anodes in lithium-ion and sodium-ion batteries: a review. Front Chem. 2020; 8:141-151. doi:10.3389/fchem.2020.00141
- 28Pender JP, Jha G, Youn DH, et al. Electrode degradation in lithium-ion batteries. ACS Nano. 2020; 14: 1243-1295. doi:10.1021/acsnano.9b04365
- 29Wang Q, Liu B, Shen Y, et al. Confronting the challenges in lithium anodes for lithium metal batteries. Adv Sci. 2021; 8: 2101111. doi:10.1002/advs.202101111
- 30Wang A, Kadam S, Li H, Shi S, Qi Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Npj Comput Mater. 2018; 4:1-26. doi:10.1038/s41524-018-0064-0
- 31Yuan FZ, Jie PW, Xing WZ, et al. Review of silicon-based alloys for lithium-ion battery anodes. Int J Miner Metall Mater. 2021; 28: 1549-1564. doi:10.1007/s12613-021-2335-x
- 32Loeffler N, Kim GT, Mueller F, et al. In situ coating of Li[Ni0.33Mn0.33Co0.33]O2 particles to enable aqueous electrode processing. ChemSusChem. 2016; 9: 1112-1117. doi:10.1002/cssc.201600353
- 33Li Y, Fu KK, Chen C, et al. Enabling high-areal-capacity lithium-sulfur batteries: designing anisotropic and low-tortuosity porous architectures. ACS Nano. 2017; 11: 4801-4807. doi:10.1021/acsnano.7b01172
- 34Guo YG, Hu YS, Sigle W, Maier J. Superior electrode performance of nanostructured mesoporous TiO2 (Anatase) through efficient hierarchical mixed conducting networks. Adv Mater. 2007; 19: 2087-2091. doi:10.1002/adma.200602828
- 35Pléha D, Dvořák P, Kunovjánek M, Musil M, Čech O. Battery separators. ECS Trans. 2012; 40: 153-158. doi:10.1149/1.4729098
10.1149/1.4729098 Google Scholar
- 36Guo Y, Ouyang Y, Li D, Wei Y, Zhai T, Li H. PMMA-assisted Li deposition towards 3D continuous dendrite-free lithium anode. Energy Storage Mater. 2019; 16: 203-211. doi:10.1016/j.ensm.2018.05.012
- 37Wu F, Yuan YX, Cheng XB, et al. Perspectives for restraining harsh lithium dendrite growth: towards robust lithium metal anodes. Energy Storage Mater. 2018; 15: 148-170. doi:10.1016/j.ensm.2018.03.024
- 38He C, Xie F. Adsorption behavior of manganese dioxide towards heavy metal ions: surface zeta potential effect. Water Air Soil Pollut. 2018; 229: 77. doi:10.1007/s11270-018-3712-6
- 39Çiçek A, Yilmaz O, Arar Ö. Removal of lithium from water by aminomethylphosphonic acid-containing resin. J Serbian Chem Soc. 2018; 83: 1059-1069. doi:10.2298/JSC170930020C
- 40Bichon M, Sotta D, Dupré N, et al. Study of immersion of LiNi0.5Mn0.3Co0.2O2 material in water for aqueous processing of positive electrode for li-ion batteries. ACS Appl Mater Interfaces. 2019; 11: 18331-18341. doi:10.1021/acsami.9b00999
- 41Xiong X, Wang Z, Yue P, et al. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. J Power Sources. 2013; 222: 318-325. doi:10.1016/j.jpowsour.2012.08.029
- 42Hou L, Hua H, Lian L, Cao H, Zhu S, Yuan C. Green template-free synthesis of hierarchical shuttle-shaped mesoporous ZnFe2O4 microrods with enhanced lithium storage for advanced Li-ion batteries. Chem A Eur J. 2015; 21: 13012-13019. doi:10.1002/chem.201501876
- 43Yuan C, Zhang L, Hou L, Pang G, Zhang X. Green template-free synthesis of mesoporous ternary CoNi-Mn oxide nanowires towards high-performance electrochemical capacitors. Part Part Syst Charact. 2014; 31: 778-787. doi:10.1002/ppsc.201300333
- 44Sai Prasanna N, Mitra J. Isolation and characterization of cellulose nanocrystals from Cucumis sativus peels. Carbohydr Polym. 2020; 247: 20-23. doi:10.1016/j.carbpol.2020.116706
- 45Zhang W, Yin J, Lin Z, et al. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochim Acta. 2015; 176: 1136-1142. doi:10.1016/j.electacta.2015.08.001
- 46Shen F, Zhu H, Luo W, et al. Chemically crushed wood cellulose fiber towards high-performance sodium-ion batteries. ACS Appl Mater Interfaces. 2015; 7: 23291-23296. doi:10.1021/acsami.5b07583
- 47Shen Y. Rice husk silica-derived nanomaterials for battery applications: a literature review. J Agric Food Chem. 2017; 65: 995-1004. doi:10.1021/acs.jafc.6b04777
- 48Cui J, Cui Y, Li S, Sun H, Wen Z, Sun J. Microsized porous SiOx@C composites synthesized through aluminothermic reduction from rice husks and used as anode for lithium-ion batteries. ACS Appl Mater Interfaces. 2016; 8: 30239-30247. doi:10.1021/acsami.6b10260
- 49Gao K, Shao Z, Li J, et al. Cellulose nanofiber−graphene all solid-state flexible supercapacitors. J Mater Chem A. 2013; 1: 63-67.
- 50Cao S, Feng X, Song Y, et al. In situ carbonized cellulose-based hybrid film as flexible paper anode for lithium-ion batteries. ACS Appl Mater Interfaces. 2016; 8: 1073-1079. doi:10.1021/acsami.5b10648
- 51Chiappone A, Nair JR, Gerbaldi C, Bongiovanni R, Zeno E. Nanoscale microfibrillated cellulose reinforced truly-solid polymer electrolytes for flexible, safe and sustainable lithium-based batteries. Cellulose. 2013; 20: 2439-2449. doi:10.1007/s10570-013-0002-8
- 52Jabbour L, Destro M, Chaussy D, et al. Flexible cellulose/LiFePO4 paper- cathodes: toward eco-friendly all-paper Li-ion batteries. Cellulose. 2013; 20: 571-582.
- 53Huang Y, Zheng M, Lin Z, et al. Flexible cathodes and multifunctional interlayers based on carbonized bacterial cellulose for high-performance lithium-sulfur batteries. J Mater Chem A. 2015; 3: 10910-10918. doi:10.1039/c5ta01515d
- 54Lu H, Guccini V, Kim H, Salazar-Alvarez G, Lindbergh G, Cornell A. Effects of different manufacturing processes on TEMPO-oxidized carboxylated cellulose nanofiber performance as binder for flexible lithium-ion batteries. ACS Appl Mater Interfaces. 2017; 9: 37712-37720. doi:10.1021/acsami.7b10307
- 55Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale. 2011; 3: 71-85.
- 56Saarinen T, Lille M, Seppälä J. Technical aspects on rheological characterization of microfibrillar cellulose water suspensions. Annu Trans Nord Rheol Soc. 2009; 17: 121-128.
- 57Song Y, Jiang Y, Shi L, et al. Solution-processed assembly of ultrathin transparent conductive cellulose nanopaper embedding AgNWs. Nanoscale. 2015; 7: 13694-13701. doi:10.1039/c5nr03218k
- 58Piotrowska A, Kierzek K, Rutkowski P, Machnikowski J. Properties and lithium insertion behavior of hard carbons produced by pyrolysis of various polymers at 1000 C. J Anal Appl Pyrolysis. 2013; 102: 1-6. doi:10.1016/j.jaap.2013.04.011
- 59Kierzek K, Piotrowska A, Machnikowski J. Cellulose-based carbon – a potential anode material for lithium-ion battery. J Phys Chem Solid. 2015; 86: 215-222. doi:10.1016/j.jpcs.2015.07.015
- 60Li J, Huang J. A nanofibrous polypyrrole/silicon composite derived from cellulose substance as the anode material for lithium-ion batteries. Chem Commun. 2015; 51: 14590-14593. doi:10.1039/c5cc05300e
- 61Jia Y, Li J. Molecular assembly of schiff base interactions: construction and application. Chem Rev. 2015; 115: 1597-1621. doi:10.1021/cr400559g
- 62Zhang X, Hu J, Chen X, et al. Microtubular carbon fibers derived from bamboo and wood as sustainable anodes for lithium and sodium ion batteries. J Porous Mater. 2019; 26: 1821-1830. doi:10.1007/s10934-019-00781-3
- 63Revathi J, Jyothirmayi A, Rao TN, Deshpande AS. Wood-derived carbon fibers embedded with SnOx nanoparticles as anode material for lithium-ion batteries. Glob Challenges. 2020; 4:1900048. doi:10.1002/gch2.201900048
- 64Guggenheim S, Martin RT. Definition of clay and clay mineral – joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays Clay Miner. 1995; 43: 255-256.
- 65White JL. Reactions of molten salts with layer-lattice silicates. Nature. 1954; 174: 799-800. doi:10.1038/174799a0
- 66Ryu J, Hong D, Choi S, Park S. Synthesis of ultrathin Si nanosheets from natural clays for Lithium-ion battery anodes. ACS Nano. 2016; 10: 2843-2851. doi:10.1021/acsnano.5b07977
- 67Adpakpang K, Oh SM, Park B, Hwang SJ. Exfoliated clay nanosheets as an efficient additive for improving the electrode functionality of graphene-based nanocomposites. Inorg Chem Front. 2017; 4: 521-529. doi:10.1039/c6qi00446f
- 68Wan H, Xiong H, Liu X, et al. Three-dimensionally interconnected Si frameworks derived from natural halloysite clay: a high-capacity anode material for lithium-ion batteries. Dalton Trans. 2018; 47: 7522-7527. doi:10.1039/c8dt01242c
- 69Alonso-Domínguez D, Pico MP, Álvarez-Serrano I, López ML. New Fe2O3-clay@C nanocomposite anodes for Li-ion batteries obtained by facile hydrothermal processes. Nanomaterials. 2018; 8:808. doi:10.3390/nano8100808
- 70Shen Y, Zhao P, Shao Q. Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous Mesoporous Mater. 2014; 188: 46-76. doi:10.1016/j.micromeso.2014.01.005
- 71Fey GTK, Chen CL. High-capacity carbons for lithiumion batteries prepared from rice husk. J Power Sources. 2001; 97–98: 725-763.
- 72Aito TS, Ujiwara HF, Be YA, Umagai SK. Hard carbon/SiOx composite active material prepared from phenolic resin and rice husk for Li-ion battery negative electrode. Int J Soc Mater Eng Resour. 2018; 23: 142-146.
10.5188/ijsmer.23.142 Google Scholar
- 73Kim HJ, Choi JH, Choi JW. Rice husk-originating silicon–graphite composites for advanced lithium ion battery anodes. Nano Converg. 2017; 4: 1-6. doi:10.1186/s40580-017-0118-x
- 74Yu K, Li J, Qi H, Liang C. High-capacity activated carbon anode material for lithium-ion batteries prepared from rice husk by a facile method. Diamond Relat Mater. 2018; 86: 139-145. doi:10.1016/j.diamond.2018.04.019
- 75Wang L, Schnepp Z, Titirici MM. Rice husk-derived carbon anodes for lithium ion batteries. J Mater Chem A. 2013; 1: 5269-5273. doi:10.1039/c3ta10650k
- 76Hwang YJ, Jeong SK, Shin JS, Nahm KS, Stephan AM. High capacity disordered carbons obtained from coconut shells as anode materials for lithium batteries. J Alloys Compd. 2008; 448: 141-147. doi:10.1016/j.jallcom.2006.10.036
- 77Chu H, Wu Q, Huang J. Rice husk derived silicon/carbon and silica/carbon nanocomposites as anodic materials for lithium-ion batteries. Colloids Surfaces A Physicochem Eng Asp. 2018; 558: 495-503. doi:10.1016/j.colsurfa.2018.09.020
- 78Majeed MK, Saleem A, Wang C, Song C, Yang J. Simplified synthesis of biomass-derived Si/C composites as stable anode materials for lithium-ion batteries. Chem A Eur J. 2020; 26: 10544-104549. doi:10.1002/chem.202000953
- 79Huang SS, Tung MT, Huynh CD, et al. Engineering rice husk into a high-performance electrode material through an ecofriendly process and assessing its application for lithium-ion sulfur batteries. ACS Sustain Chem Eng. 2019; 7: 7851-7861. doi:10.1021/acssuschemeng.9b00092
- 80Chen T, Wu J, Zhang Q, Su X. Recent advancement of SiOx based anodes for lithium-ion batteries. J Power Sources. 2017; 363: 126-144. doi:10.1016/j.jpowsour.2017.07.073
- 81Guo Y, Chen X, Liu W, et al. Preparation of rice husk-based C/SiO2 composites and their performance as anode materials in lithium ion batteries. J Electron Mater. 2020; 49: 1081-1089. doi:10.1007/s11664-019-07785-4
- 82Li Y, Huang Y, Song K, Wang X, Yu K, Liang C. Rice husk lignin-derived porous carbon anode material for lithium-ion batteries. Chem Select. 2019; 4: 4178-4184. doi:10.1002/slct.201900401
- 83Liwen J, Zhan L, Mataz A, Xiangwu Z. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci. 2011; 4: 2682-2699.
- 84Liang S, Yu K, Li Y, Liang C. Rice husk-derived carbon@SnO2@graphene anode with stable electrochemical performance used in lithium-ion batteries. Mater Res Express. 2019; 7:015021. doi:10.1088/2053-1591/ab61a0
- 85Zhang Y, Zhang P, Song X, Shen H, Kong X, Xu H. Low-cost 3D porous sea-hedgehog-like NiCo2O4/C as anode for Li-ion battery. Nanotechnology. 2020; 31:415704. doi:10.1088/1361-6528/ab98b9
- 86Plis A, Lasek J, Skawińska A, Zuwała J. Thermochemical and kinetic analysis of the pyrolysis process in Cladophora glomerata algae. J Anal Appl Pyrolysis. 2015; 115: 166-174. doi:10.1016/j.jaap.2015.07.013
- 87Salimi P, Javadian S, Norouzi O, Gharibi H. Turning an environmental problem into an opportunity: potential use of biochar derived from a harmful marine biomass named Cladophora glomerata as anode electrode for Li-ion batteries. Environ Sci Pollut Res. 2017; 24: 27974-27984. doi:10.1007/s11356-017-0181-1
- 88Zhao W, Wen J, Zhao Y, Wang Z, Shi Y, Zhao Y. Hierarchically porous carbon derived from biomass reed flowers as highly stable Li-ion battery anode. Nanomaterials. 2020; 10: 346. doi:10.3390/nano10020346
- 89Xiang J, Lv W, Mu C, Zhao J, Wang B. Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. J Alloys Compd. 2017; 701: 870-874. doi:10.1016/j.jallcom.2017.01.206
- 90Liu L, Yang L, Wang P, et al. Porous nitrogen-doped carbon derived from peanut shell as anode material for lithium ion battery. Int J Electrochem Sci. 2017; 12: 9844-9854. doi:10.20964/2017.10.88
- 91Wu Z, Wang L, Huang J, et al. Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries. Electrochim Acta. 2019; 306: 446-453. doi:10.1016/j.electacta.2019.03.165
- 92Luna-Lama F, Rodríguez-Padrón D, Puente-Santiago AR, et al. Non-porous carbonaceous materials derived from coffee waste grounds as highly sustainable anodes for lithium-ion batteries. J Clean Prod. 2019; 207: 411-417. doi:10.1016/j.jclepro.2018.10.024
- 93Sankar S, Saravanan S, Ahmed ATA, et al. Spherical activated-carbon nanoparticles derived from biomass green tea wastes for anode material of lithium-ion battery. Mater Lett. 2019; 240: 189-192. doi:10.1016/j.matlet.2018.12.143
- 94Yu C, Hou H, Liu X, et al. The recovery of the waste cigarette butts for N-doped carbon anode in lithium ion battery. Front Mater. 2018; 5:63-72. doi:10.3389/fmats.2018.00063
- 95Lim DG, Kim K, Razdan M, Diaz R, Osswald S, Pol VG. Lithium storage in structurally tunable carbon anode derived from sustainable source. Carbon. 2017; 121: 134-142. doi:10.1016/j.carbon.2017.05.079
- 96Lv W, Wen F, Xiang J, et al. Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries. Electrochim Acta. 2015; 176: 533-541. doi:10.1016/j.electacta.2015.07.059
- 97Selvamani V, Ravikumar R, Suryanarayanan V, Velayutham D, Gopukumar S. Fish scale derived nitrogen doped hierarchical porous carbon – a high rate performing anode for lithium ion cell. Electrochim Acta. 2015; 182: 1-10. doi:10.1016/j.electacta.2015.08.096
- 98Mullaivananathan V, Sathish R, Kalaiselvi N. Coir pith derived bio-carbon: demonstration of potential anode behavior in lithium-ion batteries. Electrochim Acta. 2017; 225: 143-150. doi:10.1016/j.electacta.2016.12.086
- 99Zhang Y, Chen L, Meng Y, Xie J, Guo Y, Xiao D. Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey. J Power Sources. 2016; 335: 20-30. doi:10.1016/j.jpowsour.2016.08.096
- 100Tao L, Huang Y, Zheng Y, et al. Porous carbon nanofiber derived from a waste biomass as anode material in lithium-ion batteries. J Taiwan Inst Chem Eng. 2019; 95: 217-226. doi:10.1016/j.jtice.2018.07.005
- 101Yokokura TJ, Rodriguez JR, Pol VG. Waste biomass-derived carbon anode for enhanced lithium storage. ACS Omega. 2020; 5: 19715-19720. doi:10.1021/acsomega.0c02389
- 102Ru H, Xiang K, Zhou W, Zhu Y, Zhao XS, Chen H. Bean-dreg-derived carbon materials used as superior anode material for lithium-ion batteries. Electrochim Acta. 2016; 222: 551-560. doi:10.1016/j.electacta.2016.10.202
- 103Luna-Lama F, Morales J, Caballero A. Biomass porous carbons derived from banana peel waste as sustainable anodes for lithium-ion batteries. Materials. 2021; 14:5995. doi:10.3390/ma14205995
- 104Sekar S, Lee Y, Kim DY, Lee S. Substantial LIB anode performance of graphitic carbon nanoflakes derived from biomass green-tea waste. Nanomaterials. 2019; 9:871. doi:10.3390/nano9060871
- 105Wang A, Sun Z, Ning R, Liang J, Li L, Zhou X. Study on cellulose/nylon 6 lithium battery separators modification by polyacrylonitrile in ionic liquid [Emim]Ac. AIP Adv. 2019; 9:085027. doi:10.1063/1.5116286
- 106Zhang S. A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources. 2007; 164: 351-364.
- 107Liang Y, Lin Z, Qiu Y, Zhang X. Fabrication and characterization of LATP/PAN composite fiber-based lithium-ion battery separators. Electrochim Acta. 2011; 56: 6474-6480. doi:10.1016/j.electacta.2011.05.007
- 108Gwon H, Park K, Chung SC, et al. A safe and sustainable bacterial cellulose nanofiber separator for lithium rechargeable batteries. Proc Natl Acad Sci U S A. 2019; 116: 19288-19293. doi:10.1073/pnas.1905527116
- 109Sheng J, Wang R, Yang R. Physicochemical properties of cellulose separators for lithium ion battery: comparison with Celgard2325. Materials. 2018; 12:2. doi:10.3390/ma12010002
- 110Suter JL, Groen D, Coveney PV. Chemically specifi C multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties. Adv Mater. 2015; 27: 966-984. doi:10.1002/adma.201403361
- 111Raja M, Kumar TP, Sanjeev G, Zolin L, Gerbaldi C, Stephan AM. Montmorillonite-based ceramic membranes as novel lithium-ion battery separators. Ionics. 2014; 20: 943-948.
- 112Chen C, Ma Y, Wang C. Investigation of electrochemical performance of montmorillonite clay as Li-ion battery electrode. Sustain Mater Technol. 2019; 19:e00086. doi:10.1016/j.susmat.2018.e00086
- 113Mei J, Liao T, Kou L, Sun Z. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv Mater. 2017; 29:1700176. doi:10.1002/adma.201700176
- 114Sun H, Xin G, Hu T, et al. High-rate lithiation-induced reactivation of mesoporous hollow spheres for long-lived lithium-ion batteries. Nat Commun. 2014; 5: 4526. doi:10.1038/ncomms5526
- 115Salaberria AM, Labidi J, Fernandes SCM. Different routes to turn chitin into stunning nano-objects. Eur Polym J. 2015; 68: 503-515. doi:10.1016/j.eurpolymj.2015.03.005
- 116Tu, Z.; Zachman, M. J.; Choudhury, S.; Wei, S.; Ma L. Y, Y.; Kourkoutis, L. F.; Archer LA. Nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes. Adv Energy Mater 2017; 7:1602367.
- 117Kim JK, Kim DH, Joo SH, et al. Hierarchical chitin fibers with aligned nanofibrillar architectures: a nonwoven-mat separator for lithium metal batteries. ACS Nano. 2017; 11: 6114-6121. doi:10.1021/acsnano.7b02085
- 118Håkansson KMO, Fall AB, Lundell F, et al. Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat Commun. 2014; 5:4018. doi:10.1038/ncomms5018
- 119Nguyen VH, Lee DH, Baek SY, Kim YH. Recycling different eggshell membranes for lithium-ion battery. Mater Lett. 2018; 228: 504-508. doi:10.1016/j.matlet.2018.06.081
- 120Tang D, Zhang W, Qiao ZA, Liu Y, Wang D. Polyanthraquinone/CNT nanocomposites as cathodes for rechargeable lithium ion batteries. Mater Lett. 2018; 214: 107-110. doi:10.1016/j.matlet.2017.11.119
- 121Selvamani V, Ravikumar R, Suryanarayanan V, Velayutham D, Gopukumar S. Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell. Electrochim Acta. 2016; 190: 337-345. doi:10.1016/j.electacta.2016.01.006
- 122Rajam K, Rajendran S, Saranya R. Allium sativum (garlic) extract as nontoxic corrosion inhibitor. J Chem. 2013; 2013: 1-4.
- 123Boateng B, Han Y, Zhen C, et al. Organosulfur compounds enable uniform lithium plating and long-term battery cycling stability. Nano Lett. 2020; 20: 2594-2601. doi:10.1021/acs.nanolett.0c00074
- 124Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2015; 3:1500213. doi:10.1002/advs.201500213
- 125Delaporte N, Lajoie G, Collin-Martin S, Zaghib K. Toward low-cost all-organic and biodegradable Li-ion batteries. Sci Rep. 2020; 10: 1-18. doi:10.1038/s41598-020-60633-y
- 126Jiang F, Hsieh YL. Self-assembling of TEMPO oxidized cellulose nanofibrils as affected by protonation of surface carboxyls and drying methods. ACS Sustain Chem Eng. 2016; 4: 1041-1049.
- 127Jabbour L, Bongiovanni R, Chaussy D, Gerbaldi C, Beneventi D. Cellulose-based Li-ion batteries: a review. Cellul. 2013; 20: 1523-1545.
- 128Lu H, Behm M, Leijonmarck S, Lindbergh G, Cornell A. Flexible paper electrodes for Li-ion batteries using low amount of TEMPO-oxidized cellulose nanofibrils as binder. ACS Appl Mater Interfaces. 2016; 8: 18097-18106. doi:10.1021/acsami.6b05016
- 129Yoshino A. The birth of the lithium-ion battery. Angew Chem Int Ed. 2012; 51: 5798-5800.
- 130Chang WJ, Lee GH, Cheon YJ, et al. Direct observation of carboxymethyl cellulose and styrene-butadiene rubber binder distribution in practical graphite anodes for Li-ion batteries. ACS Appl Mater Interfaces. 2019; 11: 41330-41337. doi:10.1021/acsami.9b13803
- 131Wada M, Nishiyama Y, Langan P. X-ray structure of ammonia-cellulose I: new insights into the conversion of cellulose I to cellulose III. Macromolecules. 2006; 39: 2947-2952.
- 132Vogl US, Das PK, Weber AZ, Winter M, Kostecki R, Lux SF. Mechanism of interactions between CMC binder and Si single crystal facets. Langmuir. 2014; 30: 10299-10307.
- 133Prasanna K, Subburaj T, Jo YN, Lee WJ, Lee CW. Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries. ACS Appl Mater Interfaces. 2015; 7: 7884-7890. doi:10.1021/am5084094
- 134Ravi Kumar MN. A review of chitin and chitosan applications. React Funct Polym. 2000; 46: 1-27.
- 135Zhang L, Chai L, Qu Q, Zhang L, Shen M, Zheng H. Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries. Electrochim Acta. 2013; 105: 378-383. doi:10.1016/j.electacta.2013.05.009
- 136Yue L, Zhang L, Zhong H. Carboxymethyl chitosan: a new water soluble binder for Si anode of Li-ion batteries. J Power Sources. 2014; 247: 327-331.
- 137Shi Y, Chou S-L, Wang J-Z, et al. Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability. J Mater Chem. 2012; 22: 16465-16470.
- 138Pistoia G, Antonini A, Rosati R, Zane D. Storage characteristics of cathodes for Li-ion batteries. Electrochim Acta. 1996; 41: 2683-2689.
- 139Zhang A, Luan J, Zheng Y, Sun L, Tang M. Effect of percolation on the electrical conductivity of amino molecules non-covalently coated multi-walled carbon nanotubes/epoxy composites. Appl Surf Sci. 2012; 258: 8492-8497. doi:10.1016/j.apsusc.2012.04.167
- 140Chen C, Lee SH, Cho M, Kim J, Lee Y. Cross-linked chitosan as an efficient binder for Si anode of li-ion batteries. ACS Appl Mater Interfaces. 2016; 8: 2658-2665. doi:10.1021/acsami.5b10673
- 141Liu J, Zhang Q, Zhang T, Li JT, Huang L, Sun SG. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv Funct Mater. 2015; 25: 3599-3605. doi:10.1002/adfm.201500589
- 142Ming J, Ming H, Kwak WJ, Shin C, Zheng J, Sun YK. The binder effect on an oxide-based anode in lithium and sodium-ion battery applications: the fastest way to ultrahigh performance. Chem Commun. 2014; 50: 13307-13310. doi:10.1039/c4cc02657h
- 143Lee SH, Lee JH, Nam DH, et al. Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery. ACS Appl Mater Interfaces. 2018; 10: 16449-16457. doi:10.1021/acsami.8b01614
- 144Choi S, Kwon TW, Coskun A, Choi JW. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science. 2017; 357: 279-283. doi:10.1126/science.aal4373
- 145Treloar LRG. Rubber elasticity. Contemp Phys. 1971; 12: 33-56.
- 146Chen Y, Liu N, Shao H, et al. Chitosan as a functional additive for high-performance lithium-sulfur batteries. J Mater Chem A. 2015; 3: 15235-15240. doi:10.1039/c5ta03032c
- 147Chang DR, Lee SH, Kim SW, Kim HT. Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery. J Power Sources. 2002; 112: 452-460. doi:10.1016/S0378-7753(02)00418-4
- 148Prasanna K, Subburaj T, Jo YN, et al. Chitosan complements entrapment of silicon inside nitrogen doped carbon to improve and stabilize the capacity of Li-ion batteries. Sci Rep. 2019; 9:3318. doi:10.1038/s41598-019-39988-4
- 149Meng L, Zhang X, Tang Y, Su K, Kong J. Hierarchically porous silicon-carbon-nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes. Sci Rep. 2015; 5: 5. doi:10.1038/srep07910
- 150Huang J, Liu B, Zhang P, et al. A low-cost and sustainable cross-linked dextrin as aqueous binder for silicon anodes in lithium-ion batteries. Solid State Ion. 2021; 373: 11507. doi:10.1016/j.ssi.2021.115807
- 151Jin B, Wang D, Song L, et al. Biomass-derived fluorinated corn starch emulsion as binder for silicon and silicon oxide based anodes in lithium-ion batteries. Electrochim Acta. 2021; 365:137359. doi:10.1016/j.electacta.2020.137359
- 152Liao J, Ye Z. Quaternary ammonium cationic polymer as a superior bifunctional binder for lithium–sulfur batteries and effects of counter anion. Electrochim Acta. 2018; 259: 626-636. doi:10.1016/j.electacta.2017.10.194
- 153Karuppiah D, Palanisamy R, Ponnaiah A, et al. Eggshell-membrane-derived carbon coated on Li2FeSiO4 cathode material for Li-ion batteries. Energies. 2020; 13:786. doi:10.3390/en13040786
- 154Purnomo CW, Kesuma EP, Perdana I, Aziz M. Lithium recovery from spent Li-ion batteries using coconut shell activated carbon. Waste Manag. 2018; 79: 454-461. doi:10.1016/j.wasman.2018.08.017
- 155Purnomo CW, Salim C, Hinode H. Effect of the activation method on the properties and adsorption behavior of bagasse fly ash-based activated carbon. Fuel Process Technol. 2012; 102: 132-139. doi:10.1016/j.fuproc.2012.04.037
- 156Kamran U, Park SJ. MnO2-decorated biochar composites of coconut shell and rice husk: an efficient lithium ions adsorption-desorption performance in aqueous media. Chemosphere. 2020; 260:127500. doi:10.1016/j.chemosphere.2020.127500
- 157Bhattacharjya D, Park HY, Kim MS, Choi HS, Inamdar SN, Yu JS. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries. Langmuir. 2014; 30: 318-324. doi:10.1021/la403366e
- 158Guy D, Lestriez B, Guyomard D. New composite electrode architecture and improved battery performance from the smart use of polymers and their properties. Adv Mater. 2004; 16: 553-557. doi:10.1002/adma.20030607